
IX Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)
IX DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 29 e 30 de setembro de 2016
Campinas, Brazil, September 29-30, 2016

Towards a Flexible and Extensible Framework for Realistic Traffic
Generation on Emerging Networking Scenarios

Anderson dos Santos Paschoalon , Christian Esteve Rothenberg

Departamento de Engenharia de Computação e Automação Industrial (DCA)
Faculdade de Engenharia Elétrica e de Computação (FEEC)

Universidade Estadual de Campinas (Unicamp)
Caixa Postal 6101, 13083-970 – Campinas, SP, Brasil

{pchoalon ,chesteve}@dca.fee.unicamp.br

Abstract – New emerging technologies have a larger unpredictability, compared to legacy equipment. They
require a larger set of meaningful tests on many different scenarios. But, in the open source world is hard to find
a single tool able to provide realism, speed, easy usage and flexibility at the same time. Most of the tools are
monolithic and devoted to specific purposes. This work presents a flexible and extensible framework which aims
to decouple synthetic traffic modelling from its traffic generator engine. Through a new abstraction layer, it would
become possible to use modern and throughput optimized tools to create realistic traffic, in an automated way. This
enables a platform agnostic configuration and reproduction of complex scenarios via analytical models. Also we use
pcap files and live-capture to create "Compact Trace Descriptors".

Keywords – realistic, framework, traffic generation, modelling, burstiness, fractal, flow level, packet level,
Hurst exponent, wavelet, pcap, emulation, stochastic, inter-departure, packet size, Swing, D-ITG, Harpoon, Swing,
SourcesOnOff, LegoTG, DPDK

1. Introduction
Emerging technologies such as SDN and NFV are
great promises. If succeeding at large-scale, they
should change the development and operation of
computer networks. But, enabling technologies
such as virtualization still pose challenges on per-
formance, reliability, and security [6]. Thus, gua-
rantee the Service Layer Agreements on emerging
scenarios is now a harder question. Applications
may have a huge performance degradation proces-
sing small packets [12]. As conclude by many in-
vestigations, realistic and burstiness traffic impacts
on bandwidth measurement accuracy [2]. Also, re-
alistic workload generators are essential security re-
search [4]. Thus, there is a demand for tests able to
address realism at high throughput rates.

The open-source community offers a huge
variety of workload generators and benchmarking
tools [4] [9]. Each tool uses different methods
on traffic generation, focusing on a certain aspects.
Some traffic generator tools provide support emula-
tion of single application workloads. But this is not
enough to describe an actual Service Provider(ISP)
load or even a LAN scenario. Other tools work as
packet replay engines, such as TCPreplay and TC-
Pivo. Although in that way is possible to produce a
realistic workload at high rates, it comes with some
issues. First, the storage space required becomes
huge for long-term and high-speed traffic capture
traces. Also, obtaining good traffic traces some-
times is hard, due privacy issues and fewer good

sources. Many tools aim the support of a larger
set of protocols and high-performance such Sea-
gull and Ostinato. Many are also able to control
inter-departure time and packet size using stochas-
tic models, like D-ITG [4] and MoonGen. They
can provide a good control of the traffic, and high
rates. But, in this case, selecting a good configu-
ration is by itself a research project, since how to
use each parameter to simulate a specific scenario
is a hard question [7]. It is a manual process and
demands implementation of scripts or programs le-
veraging human (and scarce) expertise on network
traffic patterns and experimental evaluation. Some
tools like Swing and Harpoon, try to use the best of
both worlds. Both use capture traces to set intern
parameters, enabling an easier configuration. Also,
Swing uses complex multi-levels which are able to
provide a high degree of realism [13]. But they have
their issues as well. Harpoon does not configure pa-
rameters at packet level [11] and is not supported
by newer Linux kernels. Swing [13] aims to gene-
rate realistic background traffic, not offering high
throughput [13] [2]. As is possible to see, this a
result of the fact that its traffic generation engine is
coupled to its modeling framework. You can’t opt to
use a newer/faster packet generator. The only way
of replacing the traffic engine is changing and re-
compiling the original code. And this is a hard task.

This project aims to create a framework
able solve many of presented issues. It must be
able to "learning"patterns and characteristics of real



IX Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)
IX DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 29 e 30 de setembro de 2016
Campinas, Brazil, September 29-30, 2016

network traffic traces. Then, using packet genera-
tors and accelerators it should reproduce a network
traffic with similar characteristics. Based on obser-
vation of live captures or PCAP files, the software
must choose the bests parametrized stochastic func-
tions (from a list) to fit the data. These parametri-
zed stochastic functions along with collected header
features (such as protocols and addresses) will be
record in a machine-readable file (such as XML or
JSON) we baptise as a Compact Trace Descriptor
(CTD). This data must serve as input for an API of
a traffic generator. So it will be possible to control
packet parameters, and flow’s behaviours, through
different APIs. Also, and speed-up may be achie-
ved, though the use of DPDk’s KNI interfaces1. So,
the main goal is to offer an easier configuration, re-
alism, at a higher speed than the available platforms
today. Also, it will add programmability and abs-
traction to the traffic generation, since the user may
edit or create a custom traffic descriptor in a plat-
form agnostic way. The the intermediate layer of
the figure 1 summarize, goal of the project in an
illustrative way.

Figura 1. Proposal representation in a layer di-
agram. It automates features such as configu-
ration, modelling, and parametrization, intelli-
gence, emulation, and abstraction through an
additional layer.

2. Literature review and related work
A common taxonomy used on traffic generator tools
based on the layer of operation. It divides them into
four categories [3]:

Application-level/Special-scenarios traffic
generators: they emulate applications behaviours,
through stochastic and responsive models. Eg.:
Surge, GenSym.

Flow-level traffic generators: they emulate
features of the flow level, such as file transference

1 http://dpdk.org/doc/guides/sample_app_
ug/kernel_nic_interface.html

and bursts. But do not model applications or packet
behaviour.Eg.: Harpoon.

Packet-level traffic generators: they model
inter-departure time and packet size through sto-
chastic distributions. They focus on performance
testing. Eg: D-ITG [4], Ostinato, Seagull, TG.

Multi-level traffic generators: These traffic
generators models each mentioned layer, describing
user and network behaviour. They generate an ac-
curate background traffic, but usually, have bottle-
necks on bandwidth. Eg.: Swing [13].

Varet et al. [1] creates an application in C,
called SourcesOnOff. It models the activity inter-
val of packet trains using probabilistic distributions.
To choose the best stochastic models, the authors
captured many traffic traces using TCPdump. Then,
they figure out what distribution (Weibull, Pareto,
Exponential, Gaussian, etc.) fits better the original
traffic traces, using the Bayesian Information Crite-
rion. For this task, they choose the function with the
smaller BIC. The smaller this value is, the better the
function fits the data.

Bartlett et al. [2] implements a modular fra-
mework for composing custom traffic generation.
Its goal is making easy the combine of different traf-
fic generators and modulators in different test-beds.
It automatizes the process of installation, execution,
resource allocation and synchronization using a cen-
tralized orchestrator and a software repository. It al-
ready has support to many tools, and to add support
to new tools is necessary to add and edit two files,
called TGblock, and ExFile.

3. System Architecture
We developed and architecture that solves the listed
issues. It has five components: a Sniffer, an SQLite
database, a Trace Analyzer, a Flow Generator, and a
Network Traffic Generator as a subsystem.

The Sniffer is responsible collecting data
from the network traffic. It extracts data from the
packets and stores them in the database. This infor-
mation can be protocols, packet size, inter-arrival
time, flows, and so on. Also, after finishing a cap-
ture, this component is the responsible for providing
data visualization. It may work over a PCAP file, or
over an Ethernet interface. The prototype version of
this component uses tsahrk to capture packets and
Shell/Octave scripts. To improve performance and
avoid bottlenecks, next implementation will use lib-

http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html
http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html


IX Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)
IX DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 29 e 30 de setembro de 2016
Campinas, Brazil, September 29-30, 2016

tins librarie for packet processing. The criteria to
classify the traffic into flows is the same of SDN
switches: internet protocol, source/destination ad-
dresses, transport protocol, and source/destination
transport ports. The framework uses an SQLite da-
tabase.

The Trace Analyzer is the core of the pro-
ject. It is the tool responsible for characterizing the
trace. Using the stored information, breaks the trace
into flows, and parametrize each of them. The pa-
rameters are header fields and stochastic functions/-
coefficients for each flow. The component models
the behaviour of the trace on flow level and pac-
ket level. At the packet level, is possible to mo-
del the packet-size and the inter-departure time, du-
ring packet bursts (ON times). At the flow level,
is possible to control bursts periods, session length,
and the number of bytes delivered. We will use li-
kelihood criterions to choose the best probabilistic
function and parameters. Options are the smaller er-
ror, Akaike information criterion, and Bayesian in-
formation criterion [1]. It will sort the parametrized
functions in a priority list. After the parametriza-
tion, the Trace Analyzer records these features in a
machine-readable file (XML, JSON) called "Com-
pact trace descriptor".

Figura 2. Hurst exponent value of original and
synthetic traces

The Flow Generator pick these abstract pa-
rameters and feed an Ethernet workload generator
tool. It crafts each flow in an independent way, in a
different thread. The presented prototype just uses
the D-ITG API as workload tool. But it can use any
packet-level traffic generator with API or CLI. This
component handles the flow level models and pa-
rametrizes the packet-level tool underneath. Since
each packet-level tool supports a different set of sto-
chastic functions, the Flow Generator should pick

the first compatible model from the priority list. But
prototype presented here still uses simple models on
packet and flow crafting, supporting just constant
distributions. But the next release should support at
packet-level heavy-tailed [1] and Poison functions
for the inter-departure times, and bimodal distribu-
tions [5] [10] for the packet size. At the flow level,
two different alternatives can be used. Model file
transference and session, such as in Harpoon [11];
or use an envelope process, as suggested by Melo et
al [8].

4. Partial results
To as proof of concept, we propose a set of tests.
We choose them, based on tests used to ensure re-
alism, on related many works [1] [13] [2]. They
aim to ensure realism and similarity. Realism tests
measure if a synthetic traffic has expected features
of an Ethernet capture. Similarity tests measures if
the generated traffic represents specific characteris-
tics of the original one. Here, due the limited space,
we will present just two results. The first, which test
realism, is the Hurst exponent evaluation. It is able
to test the self-similarity of the generated traffic. To
be self-similar, a process must have a Hurst expo-
nent between 0.5 and 1 [7]. Also, usual values of
Ethernet traffic lay between 0.8 and 0.9 [7].

Thus a realistic Ethernet traffic must have a
Hurst exponent close to the last interval. The second
test is Wavelet Multiresolution Energy Analysis. It
is able to capture characteristics of the traffic at dif-
ferent time-scales. For example, it enables visua-
lization of a periodic tendency(decrease) or a self-
similar tendency(increase) at a certain time scale.
Also, at each point, it represents the mean energy
of that signal at that time scale. So, similar Ethernet
traffics must have slopes at close time-scales. Also,
they must have close energy scales. More close are
the curves, more similar are the traces.

The evaluated prototype support just cons-
tant functions. It selects the inter-departure time
equal to the mean. The packet size is set as the most
frequent value. The flow’s start time and duration
are the same from the observed traffic. We capture
the original traffic trace on the laboratory LAN. The
results are at figures 2 and 3. On both analysis, the
generation of the synthetic trace was repeated 30 ti-
mes. The keys which serves as input to D-ITG were
randomly selected. At is possible to see that the on
both cases the Hurst exponent converge to the same



IX Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)
IX DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 29 e 30 de setembro de 2016
Campinas, Brazil, September 29-30, 2016

value, close to 0.9. But, on the wavelet multiresolu-
tion analysis, both curves still different behaviours.

Figura 3. Wavelet Multiresolution Energy
Analysis of the original and synthetic traces

5. Conclusion and future work
The framework prototype was already able to gene-
rate a realistic (self-similar) Ethernet traffic. But, as
expected, is still unable to represent well the particu-
lar features of the original traffic trace. This is a re-
sult of the, still, poor stochastic modelling. The next
job will be implementing a significative modelling
of the original traffic trace, through the specified
methodology. We expect more significant results,
them. Also, we will expand the framework to others
workload platforms and compare the results. Packet
acceleration could speed-up the performance, which
may enable the reproduction of high-throughput tra-
ces. This can be implemented using DPDK. Finally,
the results should be compared to Swing, on rea-
lism, similarity, and performance. This will give a
measurement of how good is the framework, com-
pared with others alternatives, and its strong and
weak points.

Referências
[1] Nicolas Larrieu Antoine Varet. Realistic

network traffic profile generation: Theory and
practice. Computer and Information Science,
7(2), 2014.

[2] G. Bartlett and J. Mirkovic. Expressing dif-
ferent traffic models using the legotg fra-
mework. In 2015 IEEE 35th International
Conference on Distributed Computing Systems
Workshops, pages 56–63, June 2015.

[3] A. Botta, A. Dainotti, and A. Pescape. Do you
trust your software-based traffic generator?
IEEE Communications Magazine, 48(9):158–
165, Sept 2010.

[4] Alessio Botta, Alberto Dainotti, and Antonio
Pescapé. A tool for the generation of realis-
tic network workload for emerging networking
scenarios. Computer Networks, 56(15):3531 –
3547, 2012.

[5] Ewerton Castro, Ajey Kumar, Marcelo S.
Alencar, and Iguatemi E.Fonseca. A pac-
ket distribution traffic model for computer
networks. In Proceedings of the International
Telecommunications Symposium – ITS2010,
September 2010.

[6] Bo Han, V. Gopalakrishnan, Lusheng Ji, and
Seungjoon Lee. Network function virtualiza-
tion: Challenges and opportunities for inno-
vations. Communications Magazine, IEEE,
53(2):90–97, Feb 2015.

[7] W. E. Leland, M. S. Taqqu, W. Willinger, and
D. V. Wilson. On the self-similar nature of
ethernet traffic (extended version). IEEE/ACM
Transactions on Networking, 2(1):1–15, Feb
1994.

[8] Cesar A.V. Melo and Nelson L.S. da Fonseca.
Envelope process and computation of the equi-
valent bandwidth of multifractal flows. Com-
puter Networks, 48(3):351 – 375, 2005. Long
Range Dependent Traffic.

[9] S. Molnár, P. Megyesi, and G. Szabó. How
to validate traffic generators? In 2013
IEEE International Conference on Communi-
cations Workshops (ICC), pages 1340–1344,
June 2013.

[10] L. O. Ostrowsky, N. L. S. da Fonseca, and
C. A. V. Melo. A traffic model for udp flows.
In 2007 IEEE International Conference on
Communications, pages 217–222, June 2007.

[11] Joel Sommers, Hyungsuk Kim, and Paul Bar-
ford. Harpoon: A flow-level traffic gene-
rator for router and network tests. SIGME-
TRICS Perform. Eval. Rev., 32(1):392–392,
June 2004.

[12] S. Srivastava, S. Anmulwar, A. M. Sapkal,
T. Batra, A. K. Gupta, and V. Kumar. Com-
parative study of various traffic generator to-
ols. In Engineering and Computational Scien-
ces (RAECS), 2014 Recent Advances in, pages
1–6, March 2014.

[13] K. V. Vishwanath and A. Vahdat. Swing: Re-
alistic and responsive network traffic genera-
tion. IEEE/ACM Transactions on Networking,
17(3):712–725, June 2009.


	Introduction
	Literature review and related work
	System Architecture
	Partial results
	Conclusion and future work

