N
a¥

UNICAMP

UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computacio

Anderson dos Santos Paschoalon

SIMITAR: Synthetic and Realistic Network Traffic

Generation

SIMITAR: Geracao de Trafego de Rede Sintético e

Realistico

CAMPINAS
2019



Anderson dos Santos Paschoalon

SIMITAR: Synthetic and Realistic Network Traffic

Generation

SIMITAR: Geracao de Trafego de Rede Sintético e

Realistico

Dissertation presented to the Faculty of Electri-
cal and Computer Engineering of the University
of Campinas in partial fulfillment of the require-
ments for the degree of Master in Electrical En-
gineering, in the area of Computer Engineering.

Dissertacao apresentada a Faculdade de Engen-
haria Elétrica e Computagdo da Universidade
Estadual de Campinas como parte dos requisi-
tos exigidos para a obtencdo do titulo de Mestre
em Engenharia Eletrica, na Area de Engenharia
de Computacdo.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este exemplar corresponde a ver-
sao final da dissertacio defendida
pelo aluno  Anderson dos Santos
Paschoalon , e orientada pelo Prof.
Dr. Christian Rodolfo Esteve Rothen-
berg

CAMPINAS
2019



Ficha catalografica
Universidade Estadual de Campinas
Biblioteca da Area de Engenharia e Arquitetura
Elizangela Aparecida dos Santos Souza - CRB 8/8098

Paschoalon, Anderson dos Santos, 1990- )
P262s SIMITAR : synthetic and realistic network traffic generation / Anderson dos
Santos Paschoalon. — Campinas, SP : [s.n.], 2019.

Orientador: Christian Rodolfo Esteve Rothenberg.
Dissertacao (mestrado) — Universidade Estadual de Campinas, Faculdade
de Engenharia Elétrica e de Computacao.

1. Redes de computadores. 2. Critério de informacgao de Akaike. 3.
Transformada wavelet. 4. Internet. 5. Processo estocastico. 6. Gradiente
descendente. |. Esteve Rothenberg, Christian Rodolfo, 1982-. II. Universidade
Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computacao.
[1l. Titulo.

Informacdes para Biblioteca Digital

Titulo em outro idioma: SIMITAR : geracao de trafego de rede sintético e realistico
Palavras-chave em inglés:

Computer networks

Akaike information criterion

Wavele transformed

Internet

Stochastic process

Gradient descending

Area de concentracdo: Engenharia de Computagéo
Titulagao: Mestre em Engenharia Elétrica

Banca examinadora:

Christian Rodolfo Esteve Rothenberg [Orientador]
Daniel Macédo Batista

Lee Luan Ling

Data de defesa: 19-03-2019

Programa de Pés-Graduacao: Engenharia Elétrica

Identificacédo e informagoes académicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0003-3712-8246
- Curriculo Lattes do autor: http:/lattes.cnpq.br/7698618670811185



COMISSAO JULGADORA - DISSERTACAO DE MESTRADO

Candidato: Anderson dos Santos Paschoalon RA: 083233
Data da Defesa: 17/12/2018

Titulo da Tese:

“SIMITAR: Synthetic and Realistic Network Traffic Generation”
“SIMITAR: Geracao de Trafego de Rede Sintético e Realistico”

Prof. Dr. Christian Rodolfo Esteve Rothenberg (FEEC/UNICAMP)
Prof. Dr. Lee Luan Ling (FEEC/UNICAMP)
Prof. Dr. Daniel Macédo Batista (IME/USP)

Ata de defesa, com as respectivas assinaturas dos membros da Comissdo Julgadora,

encontra-se no processo de vida académica do aluno.



Nessa dedicatdria, gostaria de agradecer a todos que me ajudarem por essa etapa, direta ou
indiretamente. Aqueles que me inspiraram € me motivaram a seguir por esse caminho, aqueles
que me ensinaram e me ajudaram durante o processo, € a aqueles cuja simples companhia me
deram energia e me motivaram para estar aqui onde estou hoje. Agradeco a todos, seja os que
estdo listados abaixo, bem como aqueles cuja minha memoria ndo me ajudou na escrita desse

texto.

Eu gostaria de agradecer a Universidade Estadual de Campinas (UNICAMP) e a Faculdade de
Engenharia Elétrica e Computagdo (FEEC) pela possibilidadede realizar meu curso de
mestrado, e pela infraestrutura que me possibilitou obter este titulo. Este estudo foi financiado
em parte pela Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) -
Cédigo Financeiro 001

Gostaria de agradecer ao meu professor e orientador Christian Esteve Rothemberg, sem o qual,
seja pelo ensino, seja pela orientacdo e apoio durante o projeto, este trabalho ndo teria saido do
papel. Gostaria de agradecer toda sua paciéncia e entendimento por esses tltimos anos. Sua
lideranga serd uma fonte de inspiracdo para mim para o restante de minha carreira, e ela estd
apenas comecando. Sem sua idéias inovadoras, suporte e encorajamento continuo, este projeto
nao teria saido do papel. Especialmente pelo fato de que em pesquisa muitas vezes as coisas
ndo saem como o esperado, e temos que reiniciar do zero o processo. Eu gostaria de expressar
a minha gratisao e honra por ter um tdo grande orentador, professor, lider € amigo durante
estes anos. Agradeco também a todos os Intrigers, colegas de grupo e de bancada, Alex, Javier,
Nathan, Cldudio, Daniel, Danny, Gyanesh, Rafael, Fabricio e todos os demais que ndao
mencionei neste texto. Agradeco a todos os demais colegas de laboratério do LCA, em

especial a Mijail, Suelen, Amadeu, Paul, ...

Agradeco a todos os companheiros e amigos que fiz em todos esses anos de
Unicamp.Agradeco a todos os grandes amigos e companheiros da Opus Dei, em especial
Padre Fabiano pelos conselhos, e a0 meu amigo Denis, grande amigo pelo apoio.Agradeco aos
meus companheiros de minha antiga casa P7, e da moradia, em especial o0 meu amigo (quase
irmao) Lucas Zorzetti (Xildo) . Agradeco a minha namorada Rubia Agondi pelo se apoio,
ajuda, amor, compreensao e paciéncia, e por sempre me fazer acreditar em meu
trabalho.Agradeco a minha tdo adorada familia, a meu Pai Tirso José Paschoalon por todo sua
preocupacao e ensino. A minha Mae Rosangela dos Santos Mota, por todo o seu carinho e
amor. E a minha irma Ariela Paschoalon, pela companhia e afeto. E por dltimo e mais

importante, agradeco a Deus por todos seu dons, protecdo e amor.



Acknowledgements

First, I would like to thanks all who have helped me, directly or indirectly. Those
who have inspired me to follow this path, those who have taught and helped me, and those
whose just their company had given me motivation and energy to be here today. I thank to all

I’ve listed down below, and all who I forgot to mention.

I would like to thank the State University of Campinas (UNICAMP) and the Faculty
of Electrical Engineering and Computing (FEEC) for the possibility of completing my master’s

degree course and for the infrastructure that enabled me to obtain this title.

This study was financed in part by the Coordenagdo de Aperfeicoamento de Pessoal
de Nivel Superior - Brasil (CAPES) - Finance Code 001.

I would like to thank my advisor Prof. Dr. Christian Rothenberg for the trust and for
letting me be part of his selected group of students. I have to say that I'm extremely grateful for
all his patience and understanding all over these last years. Also, his leadership will be a source
of inspiration for the rest of my career, that is just beginning. I would not be able to imagine
the undertaking of this research without his innovative ideas, consistent support and continuous
encouragement. Specially encouragement, since sometimes, especially on research things do
not happen as we would expect, and start from the beginning is always a hard task. I would like
to express my gratitude honor for having such a great instructor, teacher, leader and friend all

for these past years.

Thanks to all the intrigers, desk, and group colleagues Alex, Javier, Nathan, Clau-
dio, Daniel, Gyanesh, Raphael, Fabricio and all who I have not mentioned in this text. Also,

thanks to all my LCA colleagues, especially Mijail, Suelen, Amadeu, Paul, ...
Thanks to all my colleagues and friends I made all these years I’ve been at Unicamp.

Thanks to all my Opus Dei friends, especially Priest Fabiano for all his advice, and

my friend Denis who have given me a huge support.

Thanks to all my house companions from my old home house P7, and all my “mora-

dia” friends, in particular, my friend (almost brother) Lucas Zorzetti (Xildo).

Thanks to my girlfriend Rubia Agondi, for all her support, help, love, understanding

and patience, and for making me always believe on my work.

Thanks to my lovely family, my father Tirso José Paschoalon for all his attention
and education. To my mother, Rosangela dos Santos Mota, for all her affection and love. And

to my sister Ariela Paschoaln, for her company and affection.

And last, and more important, I thank God for all his gifts, protection, and love.



“ratio in homine sicut Deus in mundo”
“reason in man is rather like God in the world.”

“razdo no homem é como Deus no mundo”

De regno ad regem Cypri — Saint Thomas Aquinas (Santo Tomas de Aquino)



Abstract

Real network traffic has a different impact on network devices when compared to constant
traffic generated by tools like Iperf, even when both traffic profiles present the same average
throughput. Busty traffic may cause buffer overflows while constant traffic does not, decreasing
the measurement accuracy. The number of flows may have an impact on flow-oriented devices,
such as Software Defined Networking (SDN) switches and controllers. In scenarios where SDN
is expected to play an essential role in the future Internet, it becomes crucial that in-depth val-
idation of new technologies considering these aspects. Most of the open-source realistic traffic
generator tools have the modeling layer coupled to the traffic generator, making a challenge any
update to newer libraries. Most of the existing traffic generators support realistic traffic genera-
tion through a broad set of options to be manually but not automatically configured. As a result,

generating realistic traffic is a challenging project by itself.

In this work, we explore this subject in-depth. Our main research contributions are: (1) a review
on available solutions and network traffic modeling, and (2) the design and implementation of
the SIMITAR (Snlfing, Modelllng and TrAffic geneRation) traffic generator. The proposed ap-
proach provides a modeling framework separated from the traffic generator, being flow-oriented
and auto-configurable. We create and use Compact Trace Descriptor files as inputs - XML files
that describe traffic features for our traffic model. We are capable of replicating with accuracy
flow characteristics of all tested traffic traces, including the scaling features of some as well. We
give a particular focus on inter-packet times modeling, where we propose a methodology based
on information criteria for automating the process modeling and selection of the best model.

We also propose a cross-validation method to qualify the methodology.

Keywords: traffic generators; network traffic modelling; burstier traffic; realistic traffic; pcap
file; packet sniffing; inter packet times; linear regression; gradient descendent; Cumulative Dis-
tribution Function (CDF); maximum likelihood; Akaike Information Criterion (AIC); Bayesian

Information Criterion (BIC); packet trains; Wavelet Multiresolution Analisis; Hurst Exponent.



Resumo

Um trafego de rede real possui um impacto diferente sobre os nds da rede se comparado ao
trafego constante gerado por ferramentas como Iperf, mesmo com uma mesma taxa de transfer-
éncia. Um trafego em rajadas pode causar estouros de buffers enquanto um trafego constante
nao, e pode também diminuir a precisdo das medi¢des. O nimero de fluxos pode ter um impacto
nos nés orientados a fluxo, como switches e controladores SDN. Em um cenério em que as re-
des definidas por software desempenharao um papel essencial na Internet futura, uma validacao
mais aprofundada das novas tecnologias, considerando esses aspectos, € crucial. Além disso, a
maioria das ferramentas geradoras de trafego realistas de cddigo aberto tem a camada de mod-
elagem acoplada ao gerador de pacotes, o que dificulta sua atualiza¢do para novas bibliotecas,
tornando-as freqiientemente desatualizadas. Por fim, a maioria das ferramentas open-source
que suportam a geracao de trafego realista, oferecem um grande conjunto de op¢des a serem
configuradas, mas ndo sio auto configurdveis. Dessa forma a producdo de um trafego realista

customizado torna-se uma tarefa desafiadora.

Neste trabalho nos aprofundamos neste assunto. Como resultado final, para nossa pesquisa
destacamos duas contribuicdes principais: uma investigacdo de revisao das solucdes disponiveis
e modelagem de trafego de rede, e a proposta de nosso proprio gerador de trafego chamado
SIMITAR (acrénimo para sniffing, modelagem e geracao de trafego em inglés). Esta tecnolo-
gia possui estruturas separadas de modelagem e geracdo de trafego, sendo orientada a fluxos e
auto configuravel. Ela cria e usa Descritores de Trafego Compactos como arquivos de entrada
- Arquivos XML que descrevem caracteristicas para o nosso modelo de trafego. Atualmente
j& conseguimos replicar com precisao métricas do nivel de fluxos, e certas caracteristicas de
escala. Demos um enfoque especial na modelagem de tempos entre pacotes, onde propomos
uma metodologia baseada em critérios de informacdo para automatizar a modelagem de pro-
cessos e selecdo do melhor modelo. Também propusemos um método de validagdo para medir

a qualidade deste mesmo método.

Keywords: geradores de trafego; modelagem de trafego de rede; trafego em rajadas; trafego re-
alistico; arquivo pcap; captura de pacotes; tempo entre pacotes; regressao linear; gradiente de-
scendente; Funcdo Distribui¢do Acumulada; maxima verossimilhanga; Critério de informacao
de Akaike; Critério de informac¢ao Bayesiano; trem de pacotes; Andlise Wavelet de multires-

olu¢do; Expoente de Hurst.
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1 Introduction

1.1 Motivation

The type of traffic used for performing evaluation matters; this is a fact. Stud-
ies show that realistic Ethernet traffic provides different and variable load characteristics on
routers [Sommers e Barford 2004], even with the same average bandwidth consumption, show-
ing that constant traffic is not sufficient for complete technology validation. This conclusion
indicates that tests which employ traffic generators with constant rates are not enough for com-
plete validation of new technologies. Bursty traffic can cause packet losses and buffer overflows,
impacting on network performance and measurement accuracy [Cai et al. 2009]. Small packets
tend to degrade application performance [Srivastava et al. 2014]. Furthermore, realistic traffic
is essential on security research, such as for the evaluation of firewall middleboxes, studies on

intrusion, and malicious workloads [Botta et al. 2012].

New networking scenarios such as SDN and virtualized networks (NVF and VNFs)
become harder to predict in terms of performance compared to hardware-based technologies,
due to the multiple layers of software and platform parameters demanding validation in a broad-
ening range of use cases [Han et al. 2015]. Another critical question about the interaction be-
tween application-network has had the flow-oriented operation of SDN networks, in which
each new flow arriving on an SDN switch demands further communication with the controller.
Therefore the controller can be a bottleneck on the switches performance. Also, new types of
traffic patterns introduced by loT and Machine-to-Machine (M2M) communication [Soltanmo-
hammadi ef al. 2016] increase the complexity of the network traffic characterization, turning
pre-defined models used by traffic generators obsolete.

Furthermore, realistic traffic generators are essential security research, since the
generation of realistic workloads is essential for evaluation of firewall middleboxes. It includes
studies of intrusion, anomaly detection, and malicious workloads. By realistic, we refer to traf-
fic that represents well the traffic features, such as protocols, payloads, and protocols, able to

emulate benign and malicious workloads.

Aiming to address these gaps, this dissertation introduces SIMITAR, an auto-
configurable network traffic generator. SIMITAR stands for Snlffing, Modelllng, and TrAffic
geneRation, which correspond to the main operation processes of the proposed framework.
SIMITAR has an application independent traffic model, that can represent a wide variety of
scenarios. It also decouples the traffic modeling and packet-generation layer, using a factory
design pattern, enabling its application on different scenarios, and technology update, via tech-

nology abstraction. SIMITAR code and all scripts used in this dissertation are available at
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GitHub [Paschoalon 2019] for validation, experiment reproducibility, and re-use purposes.

1.2 Related Work

Traffic generators are tools to transfer or inject network packets in a controlled
manner, aiming not at the actual data transfer data but at the functional validation and perfor-
mance benchmarking of devices under test (DUT) for varying technologies or scenarios. The
open-source community offers a vast variety of traffic generators. Since most have been built for
specific goals, each uses different methods for traffic generation, and offer control over different

traffic features, such as throughput, packet-sizes, protocols, and so on [Botta et al. 2012].

Traffic generators can be classified into two main groups: replay engines [Varet
2014] and model-based tools. Replay engines, such as TCPReplay and TCPivo [Feng et al.
2003], work replicating in a given network interface a given packet capture file. These tools
can generate realistic traffic but have their constraints. They are deterministic since will always
reproduce the same traffic from the packet capture. Replay engines require storage of packet
capture, what can be a problem for traffics of high bandwidth traffic. Also, they assume the user
has access to packet captures appropriate for his testing purposes, which is not always true, due
to a limited number of public sources. Model-based tools rely on software models to replicate

one or more characteristics of the traffic.

Model-based tools have their limitations as well. Traffic generators that emulate the
applications, are designed to represent only specific scenarios on computer networking, and
are not enough to represent a large variety of scenarios. Many traffic generator tools only of-
fer constant-rate and Poisson models, which does not represent well the complexity of internet
traffic [Leland et al. 1994]. Other tools such as D-ITG offer dozens of parameters and mod-
els to be configured, but delegate to the user the task of creating, validate and script his traffic
model. To the best of our knowledge, we found only two open-source auto-configurable tools:
Swing and Harpoon. However, none of them has an extensible architecture, which turns support-
ing modern and fast I/O APIs (such as DPDK [DPDK — Data Plane Development Kit 2019])

a hard task. Table 1 present a summary of the above mentioned features for some relevant

Table 1 — Comparison of existing traffic generation tools.

Solution Auto-configurable Realistic Traffic Traffic Custumization Extensibility

Harpoon yes yes yes no
D-ITG no yes yes no
Swing yes yes no no

Ostinato no no yes yes

LegoTG no no yes yes

sourcesOnOff no yes yes no
Iperf no no yes no

SIMITAR yes yes yes yes
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traffic generators: Swing [Vishwanath e Vahdat 2009], Harpoon [Sommers e Barford 2004],
sourcesOnOff [Varet 2014], D-ITG [Botta et al. 2012], Iperf [iPerf - The network bandwidth
measurement tool 2019], Ostinato [Ostinato Network Traffic Generator and Analyzer 2016] and
LegoTG [Bartlett e Mirkovic 2015].

1.3 Objectives, Requirements, and Methodology
Based on the provided context, we defined a set of targets for our research:

1. Survey: Evaluate open-source Ethernet workload tools and address features each one has.
We wanted to know the existing solutions, innovation points on the current state of affairs,

and how can we some could be integrated and reused by our solution;

2. Background studies: Study the characterization and mathematical modeling of Ethernet

traffic, what are the best models and challenges.

3. Definition of Realistic Traffic: Define what realistic traffic generation is, and how to

measure if any synthetic traffic is realistic or not.
4. Design: Create a general method for modeling and parameterization of Ethernet traffic;
5. Development: Create a self-configurable tool that observes and uses real network traffic,

and reproduce its behavior characteristics, avoiding the storage of large pcap files.

Towards the above-stated objectives, we had identified a set of requirements of the

envisioned traffic generation tool should meet:

* Auto-configurable: It must be able to extract data from real traffic and store in a database,
and use it to parametrize its traffic model. It must be able to obtain data from real-time

traffics and from pcap files;

* Technology independent: It must have a flow-based abstract model for traffic generation,

not attached to any specific technology.

» Extensibility: traffic modeling and generation must be decoupled. Ideally, it must be able

to use as a traffic generator engine any library or traffic generator tool;

» Simple usage: It must be easy to use. It has to take as input a Compact Trace Descriptor,

just as a traffic replay engine (such as TCPreplay) would take a pcap file;

* Human readable model: it must produce a human-readable file as output that describes

our traffic using our abstract model. We call this file a Compact Trace Descriptor (CDT);
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* Traffic generation programmability: It must have what we call traffic generation pro-
grammability. The compact trace descriptor must be simple and easy to read. That way,

the user may want to create our custom traffic, in a platform agnostic way.

* Flow-oriented: traffic modeling and generation must be flow-oriented. Each flow must

be modeled and generated separately.

PHASE 1: Requirementsl PHASE 2:
(Working Plan) Design

(Research 1)
ol

PHASE 4: PHASE 5:
Preparation Development
(Research 2) (Prototyping/Codding

Figure 1 — Spiral research and development procedure

We have adopted a spiral procedure of development, as suggested Sommerville on
Software Engineering [Sommerville 2007], but adapted to an academic research process. Fig-

ure 1 shows the model of development we had adopted. It had four main phases:

1. Requirements (working plan);
2. Design (research 1);
3. Development (prototyping/codding);

4. Preparation (research 2).

On the Requirements phase, we create tasks, formalized on Working Plans docu-
ments. These tasks should cover the whole process. On the Design (research 1) phase, where
the focus of the research are related works. We research on literature to learn about topics de-
fined by the task, to help we design our solutions. On this step, during the initial phases of the
project, we also conceived the architecture along with UML diagrams'. Some small changes are
inevitable, but structural changes turn to be impractical on later phases. The next phase is the
Development phase. It is the prototyping and coding phase. The last is the Preparation phase
when we evaluate the results achieved on the Development phase, and we go back to research
again, aiming to prepare the next Working Plan. On this phase, the focus of the research is on

points of innovation.

' Unified Modeling Language (UML) is a modeling language designed to provide a standardized way of rep-

resenting and design systems [Booch 2005].
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1.4 Outline

In this introductory Chapter, we had presented an abstract of state of affairs, and the
main goals of our research. Chapter 2 presents a survey on open-source traffic generator tools,
summarizing the benefits, and features supported by each one. The chapter offers a review of
topics on realistic traffic generation and defines important concepts on network traffic modeling;
such as self-similarity and heavy-tailed distributions. Also, the chapter presents a survey on

techniques for validating traffic generator tools

Chapter 3 presents SIMITAR traffic generator. We describe its low-level require-
ments and define an architecture and their algorithms. We explain its operation and suggest
some use cases. In Chapter 4, we go deep on the modeling process we had developed for our
traffic generator. We validate the effectiveness of Information Criteria AIC and BIC as a method
selection of stochastic models for Ethernet traffic. We also discuss some other algorithms we
developed such as calcOnOff and the application protocol guesser. In Chapter 5, we define
a set of metrics based on previous tests on validation of traffic generators found in the litera-
ture. Here, we focus on the packet, flow, and scaling metrics. We test our tool in an emulated
SDN testbed with Mininet [Mininet — An Instant Virtual Network on your Laptop (or other PC)
201912, using OpenDayLight [The OpenDayLight Platform 2019] as the SDN controller.

Chapter 6 highlights future actions to improve SIMITAR on realism and perfor-
mance along with other future research avenues, including improving its computational perfor-
mance, expand it to new APIs of traffic generation and calibration of its constants. Finally, we

end the work presentation with a conclusion ( Chapter 7).

Appendices A, B, and C provide supplementary materials for Chapter 2: Review
of Mathematical Concepts, Computer Networks, and Traffic Generators. Appendix D provides
charts in addition to those presented in Chapter 4, and Appendix E complements the presenta-

tion of the architecture discussed in Chapter 3 by presenting SIMITAR UML class diagrams.

2 Mininet is a network emulator. It can run a collection of hosts, switches, routers and links over a single Linux

kernel, using lightweight virtualization [Introduction to Mininet - mininet/mininet Wiki 2019].
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2 Literature Review

2.1 Traffic Generators

Traffic generators are tools to transfer or inject network packets in a controlled man-
ner, aiming not at the actual data transfer data, but validation and performance benchmarking
of devices under test (DUT) [Molnar et al. 2013]. There is a vast variety of traffic generators

described on literature [Botta et al. 2012] and available in the open-source community'.

Together with many traffic generators, there are many open-source APIs for traffic
generation. Some are low-level APIs, which enables precise control of each packet generated,
and are used in the implementation of traffic generators”. Also, they are computationally more
efficient compared to high-level APIs for traffic generation. We’ve listed some low-level APIs

below:

GNU Socket API (C) [Sockets 2019];

Libpcap (C) [Tcpdump & Libpcap 2019];

Libtins (C++) [libtins: packet crafting and sniffing library 2019];

Scapy (Python) [Scapy — Packet crafting for Python2 and Python3 2019];

DPDK (C) [DPDK - Data Plane Development Kit 2019].

We also have high-level APIs, usually provide by traffic generator, which simplifies

the programming of custom traffic. For example:

e D-ITG API (C) [D-ITG, Distributed Internet Traffic Generator 2015];
* Ostinato API (Python) [Ostinato Network Traffic Generator and Analyzer 2016];
e MoonGen API (Lua) [MoonGen 2019];

* DPDK-Pktgen scripting interface (Lua) [Getting Started with Pktgen 2015].

http://www.icir.org/models/trafficgenerators.html

2 For example: D-ITG [Botta et al. 2012] and Iperf [iPerf - The network bandwidth measurement tool 2019] uses
the GNU Socket API [Sockets 2019], Ostinato [Ostinato Network Traffic Generator and Analyzer 2016] uses
libpcap [Tcpdump & Libpcap 2019], and MoonGen [Emmerich et al. 2015] uses DPDK [DPDK — Data Plane
Development Kit 2019].
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There are many taxonomies for traffic generators available in the literature. Classify
traffic generators is usually "blur" process since packet generators feature many times fall into

more than one class. We present two taxonomies:

* Traffic generation strategy;

* Traffic generator implementation.

2.1.1 Strategy

Traffic generators can be classified into two main groups: replay engines [Varet
2014] and model-based tools:

* Replay engines: These tools can read pcap files, and inject copies of the packet on a
network interface. Eg.: TCPReplay [Tcpreplay home 2019], TCPivo [Feng et al. 2003],
D-ITG [Botta et al. 2012].

* Model-based traffic generators: they generate synthetic traffic, controlling one or more

feature of the traffic; such as header fields, packet sizes and inter-packet times.

Model-based traffic generators can be sub-classified based on the abstraction layer
the model operates. We follow here the taxonomy presented by Botta et al. [Botta et al. 2010].
Figure 2 shows these traffic generators organized in a layer diagram.

* Application-level traffic generators: they try to emulate the behavior of network ap-
plications, simulating real workloads stochastically or responsively>. As an example, we

have Surge, which mimics the communication between clients and web servers;

* Flow-level traffic generators: they can reproduce flow characteristics, such as flow du-
ration, start times distributions, and temporal traffic volumes. Harpoon can extract these

parameters from Cisco NetFlow data, collected from routers;

* Packet-level traffic generators: it is the most used traffic generators. They can control
packet-features like inter-departure times, packet size, throughput and packets per second.
For example, D-ITG [Botta et al. 2012], and TG [Traffic Generator 2011] can control
inter-packet times via stochastic distributions. However, most of them only permit the
configuration of constant-rate models, by setting the packet rate or the traffic bandwidth,
such as Iperf [iPerf - The network bandwidth measurement tool 2019], BRUNO [Antichi
et al. 2008], and Ostinato [Ostinato Network Traffic Generator and Analyzer 2016].

3 Responsiveness refers to the ability of responding the changes in real-time. In the traffic generator’s context, it

refers to the ability of changing inner parameters depending on patterns of arriving packets.
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* Multi-level traffic generators: this is a more recent class of network traffic generator.
They take into account existing interaction among each layer of the network stack, to
create network traffic as close as possible to reality. The most important tool is Swing
[Vishwanath e Vahdat 2009] which input collected pcap files.

We have done an extensive survey on packet generators available on the open-source
community and classified them according to the first taxonomy. Also, we summarized the main
features of each one. The result of this work is the Tables 14, 15, 16, and 17, in the Appendix C.

We also have a list of the tool repositories at Table 18.

2.1.2 Implementation

* Software-only traffic generators: Implementations of traffic generators utterly indepen-
dent of its running hardware platform. This implementation comprehends most of traffic

generator tools, including all previously mentioned.

* Software and hardware-dependent traffic generators: are traffic generators imple-
mented in software, but dependent on the underlying hardware. The most preeminent ex-
amples of this class used DPDK [DPDK - Data Plane Development Kit 2019] as packet-
generator API. DPDK works directly on the NIC interface, avoiding Operational Systems
overheads. As cited on its official website, this approach permits huge precision. As ex-
amples we have MoonGen [Emmerich et al. 2015] and DPDK-PktGen [Getting Started
with Pktgen 2015]

* Hardware traffic generators: these open-source traffic generators are implemented in
hardware description language (VHDL/Verilog), and work on NetFPGAs. Some exam-
ples of implementations are PacketGenerator [Covington et al. 2009], Caliper [Ghobadi
et al. 2012], and OSNT Packet Generator [Antichi ef al. 2014].

2.2 Realistic Traffic and Traffic Modeling

2.2.1 Realistic Network Traffic Generation

As presented, there is a considerable amount of open-source traffic generators avail-
able, each one of them with many different sets of features available. However, on the genera-
tion of realistic workload, the set of possibilities becomes much more restricted. On the other
hand, there are many works on characterization, modeling, and simulation of different types
of network workload. As stated by Botta et al. [Botta et al. 2012], a synthetic network traffic
generation over real networks should be able to:
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Figure 2 — Diagram representing different traffic generators, according to its abstraction layer.
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1. Capture real traces complexity over different scenarios;
2. Be able to custom change some specific properties of the generated traffic ;
3. Return measure indicators of performance experienced by the workload.
As we have found out over the literature in our research, the measure of realism of

a traffic generator is given by how well a traffic generator can represent features at the level its

model works. For example:

Swing: Vishwanath and Vahdat [Vishwanath e Vahdat 2009] validate their work against

packet, flow, and application level features;

Harpoon: Sommers and Barford [Sommers e Barford 2004] validate harpoon on flow-

level features;

D-ITG: Botta et al. [Botta et al. 2012] validate their work against application-level and

packet-level features;

sourcesOnOASf: Varet and Larrieu validate sourcesOnOff on packet-level features [Varet
2014].

Therefore, we defined a realistic traffic generator as follows:
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Realistic Traffic Generator

A realistic traffic generator is a tool that its model can reproduce real traces complexity

and behavior, at the same level of abstraction its traffic model works: on the packet, flow,
application or multi-level. In other words, the validation techniques must give similar

results to the real and synthetic traces.

We are going to discuss metrics on validation of traffic generators in the next sec-
tion. The rest of this section will highlight topics on network traffic modeling. We are not going
to discuss application modeling, since each one may have their specific behavior. We are going

to discuss points that apply to any traffic in general:

Inter-packet times (throughput) modeling;

Packet-sizes modeling;

Packet-header fields;

Flow modeling;

Closed-loop behavior modeling.

2.2.2 Inter-packet times (throughput) modeling

Classical models for network traffic generation were the same used in telephone
traffic, such as Poisson or Poisson-related. They can describe the randomness of an Ethernet
link but cannot capture the presence of "burstiness" in a long-term time scale, such as traffic
"spikes" on long-range "ripples". Lerand et al. [Leland et al. 1994], points in his seminal work,
in 1994, that the nature of the Ethernet traffic is self-similar. It has a fractal-like shape since
characteristics seen in a small time scale should appear on a long-scale as well, that have been
referred, in the most of the time, as long-range dependence or degree of long-range dependence
(LRD). One way to identify if a process is self-similar is by checking its Hurst parameter, or
Hurst exponent H, as a measure of the "burstiness" and LRD. A random process is self-similar
and LRD if 0.5 < H < 1 [Rongcai e Shuo 2010] (Appendix A).

Willinger et al. pointed out that the Ethernet traffic has a high variability (or infi-
nite variance) [Willinger et al. 1997]. Processes with such characteristic are said to be heavy-
tailed. In practical terms, that means a sudden discontinuous change can always occur. To be
heavy-tailed means that the stochastic distribution is not exponentially bounded. In other words,
some value far from the mean does not have a negligible probability of occurrence. We can ex-

press self-similar and heavy-tailed processes using heavy-tailed stochastic distributions, such
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Table 2 — Probability density function (PDF) and Cumulative distribution function (CDF) of
some random variables, and if this stochastic distribution has or not self-similarity
property. Some functions used to express these distributions are defined at the Table 3

Distribution PDF Equation CDF Equation Parameters Heavy-tailed
i _ Mk _ T(k+1],4) A > 0 (mean,
Poisson flk] =5 Flk] = k]! variance) no
. . o\ k(1 o \n—k _ . n>0 (tl‘ials)
Binomial fIk = () p*(1=p) Flkl|=L_p(n—k,1+k) > 0 (success) o
(—n? 1 —u U (mean)
_ 1 F(t)=5[1 f(—=
Normal f(@) 50728 (1) =3[t Fer (G\fz)] o > 0 (std.dev) no
- Ae ™ >0 "y
Exponential — > P = F(t)=1-—
P f(f)—{o’ (<0 () ¢ A > 0 (rate) no
atd _ (tm\o. a > 0 (shape)
Pareto = e 121t F(r) — 1—=(")% t>t,
f() {0; 1<ty (t) 0: 1<t tm > 0 (scale) yes
_ 1 a _1 t—tgy | 1 ¥ > 0 (scale)
Cauchy flo)= ﬂ)’[(t*lo)2+72] F (1) = garctan( )t to > 0 (location) yes
-1 @ —(t/B)%.
Weibull )= ﬁ%t"‘ e(t/B) >0 F() = 1—e WB*: >0 a> (())(sha;l)e)
0; 1<0 0; t<0 B>0(scale) yes
L a > 0 (shape)
Gamma 1) = gt te P Fi=1-rgflepy G o
_ xl(—x)f! . a > 0 (shape)
Beta S = B(a,B) F(t) = 1(a,p) B > 0 (shape) no
Log-normal i _(In()r)*zli)2 F(Z‘) 1 " lerf[ln<x>_“] u (lOCﬁtiOﬂ)
g flo)= ot ° 2727 Vie o > 0 (shape) yes
. 1 kg r 1 ok x
- t)= 12 e 2 F(t)=—v(5,3
Chi-squared 1) Q%F(%) (t) T %)7(2 3) k€ Nag o

as Pareto and Weibull. Table 2 shows the reference for these stochastic distributions. In the last

column, we indicate if the distribution is or not heavy-tailed.

These concepts of High variability and Self-similarity are called Noah and Joseph

Effects [Willinger et al. 1997]. Willinger et al. point that the superposition of many ON/OFF

sources (or packet trains) using ON and OFF times that obey the Noah Effect (heavy-tailed

probabilistic functions), also obey the Joseph effect. That means, it is a self-similar process and

can be used to describe Ethernet traffic. Some works on the literature on synthetic traffic uses

this principle, like sourcesOnOff [Varet 2014], or have to heavy-tailed processes, such as like

D-ITG. Furthermore, some later studies advocate the use of more advanced multiscaling models

(multifractal), addressed by investigations that uses envelope processes [Melo e Fonseca 2005].
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Table 3 — Definitions of some functions used by PDFs and CDFs

Function Definition

B(x|a,b)

Regularized Incomplete beta function Ii(a,b) = Bab)

Incomplete beta function
Beta function

—x 42
J; e dt

Error function erf(x) =

1
S VE

Lower incomplete Gamma function

B(x|a,b) = [31* (1 —1)~Dds

B(x|a,b) = [ 11 (1—1)b=Vdr

V(s,x) =x'T(s)e ™ Xl %

Table 4 — Two different studies evaluating the impact of packet size on the throughput. Both
compare many available open-source tools on different testbeds. In all cases, small
packet sizes penalize the throughput. Bigger packet sizes achieve a higher throughput.

Traffic Generators
Article and setup Maximum bit-rate | Maximum bit-rate
Tool at smgll packet at blg packet
sizes sizes

Article: Comparative study of various PackETH | 150 @(64 bytes) | 1745 @(1408 bytes)
Traffic Generator Tools [Srivastava et al. 2014] ; y y
Setup: Linux (Centos 6.2, .
Kernel version 2.6.32). Ostinato 135 @(64 bytes) | 2850 @(1408 bytes)
Inter(R) Xeon(R) CPU with 2.96GHz,
RAM of 64GB . NIC Mellanox D-ITG 62 @(64 bytes) 1950 @(1408 bytes),
Technologies MT25418 [ConnectXVPI 9808 @(1460 bytes,
PClIe 2.0 2.5GT/s - IB DDR] 10 Bbps. 12 threads)

8450 @(1460 bytes,

. %

Protocol: TCP Iperf 12 threads)
Article: Performance Monitoring of Various
Network Traffic Generators [Kolahi et al. 2011]; Iperf 46.0 @(128 bytes) | 93.1 @(1408 bytes)
Setup: Intel (R) Pentium 4(R), CPU
with 3.0GHz, RAM 1GB, Netperf | 46.0 @(128 bytes) | 89.9 @ (1408 bytes)
NIC Intel Pro/100 Adapter
(100Mbps), D-ITG | 38.1 @(128 bytes) | 83.1 @(1408 bytes)
Hard Drivers Seagate Barracuda
7200 series with 20BG. IP Traffic | 61.0 @(128 bytes) | 76.7 @(1408 bytes)
Protocol:TCP

2.2.3 Packet-sizes modeling

The literature shows that the packet size of a trace may result in a considerable

impact in a trace throughput since small packets cause significant overhead on packet pro-

cessing [Rongcai e Shuo 2010] [Kolahi ef al. 2011]. Table 4 summarizes the results from two

different works about throughput impact of packet sizes. On packet size distributions’ charac-
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terization, we can find many works as well. For example, Castro et al. pointed that 90% of UDP
packets were smaller than 500 bytes, and most packets transmitted using TCP have 40 bytes
(acknowledgment) and 1500 bytes (Maximum Transmission Unit, MTU) [Castro et al. 2010].
Ostrowsky et al. found that on UDP traces, the modes of two regions were 120 and 1350 bytes,
with a cut-off value of 750 bytes. They also found that roughly UDP packets constituted 20% of
the total number of packets on captures [Ostrowsky et al. 2007]. Castro et al. points on his work
that captured traces on routers were all bimodal, and the majority is TCP. However, the size of
each mode may change depending on the application. For example, an HTTP traffic tends to
have a mode closer to the MTU compared to an FTP capture [Castro et al. 2010].

2.2.4 Packet-header fields

Accurate replication of network traffic should be able to control packet headers such
as protocols, ports, addresses, and so on. Traffic generators provide support for these features,
more frequently in a limited way. Most offer support just standard protocols, such as TCP, UDP,
and IPv4. On the other hands, there are some which provide a vast variety of support and control
over packet headers like PackETH [PACKETH 2015] and D-ITG [D-ITG, Distributed Internet
Traffic Generator 2015]. Other tools are even able to enable someone to extend this feature and
develop support to new protocols. For example, Ostinato and Seagull permit the customization

and creation of protocols [Seagull — Open Source tool for IMS testing 2006].

2.2.5 Flow modeling

Some packet-level traffic generators permit the control of flow generation, mostly
manually through an API or scripting. In terms of automatic flow configuration, an example
is Harpoon [Sommers et al. 2004], which can to automatically configure its flows, using as
input NetFlow Cisco traffic traces to automatically setting parameters. Harpoon deals with flow
modeling in three different levels: file level, session level, and user level, not dealing with packet
level at all. In the file level, Harpoon model two parameters: the files size and the time interval
between consecutive file requests, called inter-file request time. The middle level is the session
level, that consist of sequences files transfer between two distinct IP addresses. The session
level has three components: the IP spatial distribution, the second is the inter-session start times
and the third is the session duration. The last level is the user level. In Harpoon, "users" are
divided on "TCP" and "UDP" users, which conduct consecutive session using these protocols.
This level has two components: the user ON time, and the number of active users. By modeling

the number of users, Harpoon can reproduce temporal (diurnal) traffic volumes.
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2.2.6 Closed-loop (responsive) models

The closed-loop operation means that the traffic generator uses feedback to recon-
figure its model. That means the traffic generator can change its behavior at run time accord-
ing to the observation made in real-time, changing the traffic created. These modifications in-
volve changes on parameters of statistical distributions of inter-departure time and packet size,
for example. Swing [Vishwanath e Vahdat 2009] and application-level traffic generators like
Surge [Barford e Crovella 1998] and GenSyn [Heegaard 2000] uses this strategy.

2.3 Validation of Traffic Generator Tools

After the implementation of a traffic generator, it needs to be validated. Thus, we
need a set of proof of concepts to evaluate if it reached its purposes or not. Researchers have
been proposed many validation techniques, according to the traffic generator intended behavior.
Magyesi and Szab6 [Molndr et al. 2013] presented a survey of these techniques, grouped by
type of metric. The authors classified the techniques into four categories: packet based metrics,
flow-based metrics, scaling characteristics, and QoS/QoE related metrics. Here we present a

short review of each group of these validation techniques.

2.3.1 Packet Based Metrics

Packet-based metrics are the most used metrics in the validation of traffic generators
[Molndr et al. 2013]. The most relevant packet based metrics are throughput [Botta et al. 2010]
[Srivastava et al. 2014] [Kolahi et al. 2011] [Emmerich ef al. 2015] (bytes and packets), packet
size distribution [Castro et al. 2010] and inter-packet time distribution (inter-arrival and inter-
departure) [Varet 2014] [Botta et al. 2012].

2.3.2 Flow Based Metrics

Since SDN device, which execute flow-based operations are becoming widespread,
flow-based metrics are becoming increasingly relevant [Molnér et al. 2013] [Kreutz et al. 2015].
Magyesi and Szab6 [Molndr et al. 2013] consider the essential flow metrics, the flow size dis-
tribution, and volume. The flow volume stands for the number of flows of traffic. The flow size
distribution is a measure of the time-length of the flows in network traffic. The flow volume
corresponds to the number of flows that a device must process simultaneously. Moreover, the

flow sizes define how much time each of these instances will run.
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2.3.3 Fractal and Scaling Characteristics

Hurst Exponent

Second order characteristics such as "burstiness" and long-range dependence are
responsible for the complex nature of internet traffic [Molnar et al. 2013]. Due to its non-
stationary nature, traditional methods fail to extract useful information [Molnér et al. 2013].
The first analysis found in the literature to extract fractal characteristics was made by Lerand
et al. estimating the Hurst exponent [Leland er al. 1994]. They demonstrated the self-similar
nature of the Ethernet traffic. As explained in the previous section, a self-similar process should

have a Hurst exponent valued larger than 0.5 and smaller than 1 (0.5 < H < 1).

Wavelet-based Analysis

Over the years, wavelet-based analysis has become an efficient way to reveal corre-
lations, bursts and scaling nature of the Ethernet traffic [Molndr et al. 2013]. Many papers have
used wavelet-based analysisciteswing-paper [Huang et al. 2001] [Abry e Veitch 1998]. Huang
et al. [Huang et al. 2001] and Abry and Veitch [Abry e Veitch 1998] offer an extensible ex-
planation of wavelet-based scaling analysis (WSA) or wavelet multi-resolution energy analysis
(WMA).

We will now make a brief derivation of the energy curves used in wavelet analysis
(WMA). First, consider a time series X for k =0,1,...2":

{Xox} = {X0,0,X0,1,---, X027 } (2.1)

Then, we roughly approximate X in another time-series X; with half of the original resolution,

but using/2 as normalization factor:

1
X1k = E(XO,Zk +Xo,2k+1) (2.2)

Taking the differences, instead of the averages (equation 2.2), evaluate the so-called details.

1
diy= E(XQZk — X0,2k+1) (2.3)

Continuing this process respectively , writing coarser time series X, from Xj, until we reach X,,.

Therefore, we will get a collection of details:

{dj,k} = {dl,O;dl,l , ...,d172n/2, ...,a',Z’()} 2.4)
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This collection of details d; ; are called Discrete Haar Wavelet Transform. Using the details, we

can calculate the energy function E;, under the scale j, using:
Vit
Ej=+ Y ldil® =120 (2.5)
J k=0

were N is the total number of coefficients at scale j. Plotting a graph of log(E;) as a function o

the scale j, we will obtain a wavelet multiresolution energy curve.

On energy wavelet multiresolution energy curves, it is possible to capture three cen-
tral behaviors, according to the time-scale. On periodic time series, the Energy values will be
small. Time-series with no error in the time-periods of the scales j, the energy values E; will be
zero. So periodicity will be sensed if the value of the energy function decrease. Perfect white
noise time series maintains the same value of the energy function. So an approximately con-
stant value for the energy function E; indicates white noise behavior (which can be represented
by a Poisson process [Grigoriu 2004]). On self-similar time series, the energy function log(E )
grows approximately linearly with the scale j. Following these rules, we can quickly identify pe-
riodicities, and self-similar and Poisson process characteristics, just seeing if it decays, growths,

or constant-shapes on wavelet energy plots.

Later studies suggested the use of multi-fractal models, instead of the self-similar
models (also called monofractal) [Molnar et al. 2013] [Ostrowsky et al. 2007]. Since there is
a lack of multiscaling analysis in validation of traffic generation in the literature, this type of

analysis will stay for future works.

QQ0plots Analysis

Another way to analyze scaling characteristics is through QQplots (Appendix A)
[WILK e GNANADESIKAN 1968] [Understanding Q-Q Plots | University of Virginia Library
Research Data Services + Sciences 2019] [Q—Q plot 2019]. QQplot is a visual method to com-
pare sample data with a specific stochastic distribution. To create a QQplot, we must order the
orders the measured data values (samples) from the smallest to largest. Then, we have to plots
the samples against the expected value given by the model we want to validate. The sample
values appear along the y-axis and the theoretical values along the x-axis, as we represent on
the Figure 3. Finally, we draw a line with 45 degrees of inclination, representing how the sam-
ples would behave if they had the same behavior of the theoretical model. The more linear, the
more the data is likely to be expressed by this specific stochastic distribution. Also, Depending
on how the curve be behaves, some features of the empirical dataset compared to the theo-
retical can be observed, such as heavy-tail, light-tail, bimodal behavior, and the curve skew

(Figure 3). We present a complete tutorial about this subject in the Appendix A.
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Figure 3 — How information about may be extracted from QQplots.

2.34 QoS/QoE Related Metrics

For the point of view of traffic generation, QoS and QoE metrics should present
similar values to the ones found in real scenarios. As stated by Magyesi and Szab6 [Molnar
et al. 2013], important QoS/QoE metrics on validation of workload tools are Round trip Time
values (RTT), average queue waiting time and, queue size. Still, on queue size, self-similar

traffic consumes router buffers faster than Poisson traffic [Cevizci et al. 2006].

2.4 Conclusions

In this chapter, we discussed some fundamental concepts of our research: network
traffic generators, network traffic modeling, and network traffic generators validation. In sec-
tion 2.1, we surveyed types of traffic generators and a comparison between their considerable
variability of features. It helped us to summarize and have an understanding of what is avail-
able nowadays for use, and define the gaps. Also, this chapter helped us to identify what tools
and frameworks are available to use. Section 2.2 showed a brief overview of efforts on network
traffic modeling and realistic traffic generation. In the modeling issue, was presented a short
historical summary of some critical points of network traffic modeling, and on practical traffic

generation, discussing some reference tools.
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3 SIMITAR: Architecture and Methodology

In this Chapter, we will present our tool which aims to meet the objectives identified
in Chapter 1. SIMITAR' is an acronym for Snlffing?, Modelllng, and TrAffic geneRation. This
acronym summarizes its main fenctional features. SIMITAR is a traffic generator able to learn
features of real traffic automatically, and reproduce synthetic traffic similar to the original. It
generates a model for the traffic in an XML? file we call the Compact Trace Descriptor (CTD).
As input data, SIMITAR can use pcap files or real-time captures.

( User/management layer

“

=3

Workload tool

0

Figure 4 — Main architectural concept of SIMITAR: a tool to automatize many tasks on traffic
modelling and generation.

Figure 4 abstracts the stated concepts in a layer model diagram. Our tool works as an
intermediate layer which offers traffic modeling, configuration, emulation, and programma-
bility. In the Figure, we also include packet acceleration*, which is not implemented yet but
discussed as future work, in Chapter 6. We are going to refer to the underlying workload tool

as the packet generator engine and it is used via API by SIMITAR.

We also introduce the concept of programmability. The user may create custom
traffic, creating the Compact Trace Descriptor, following its template. The idea is that he or she
can create custom traffic in a platform agnostic way, without having to study any documentation,

and implement any script or program. Using a component methodology, we uncouple the packet

1
2

A Scimitar or Scymitar is curved sword, originating in the Middle East [Burton 2014].

Sniffing is the operation of Sniffers. Sniffers are tools able to intercept and analyze packets passing over the
network. Are also called packet analyzers [Garcia 2008].

Extensible Markup Language (XML) is a markup language that defines rules for storing and processing hier-
archical data [W3C 2019].

4 Packet acceleration is a concept introduced by DPDK [DPDK — Data Plane Development Kit 2019], which
means kernel by-pass. Packet acceleration optimizes the packet processing, and therefore traffic generation,
enabling higher throughput rates.
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generation, from the data collection and parameterization process. We developed it using the

factory design pattern’ to make the extension easy for any packet generator engine.

We abstract the whole operation cycle in Figure 5. Our tool collects packet data
from live captures or pcap files. It then breaks down the traffic into flows and uses the data
to generate parameters for our traffic model. Finally, SIMITAR provides these parameters to a

packet generator engine and controls the packet injection.

elllng and
parameterization

synthetic %
traffic

vas

traffic engine

Figure 5 — an operation cycle of SIMITAR, emphasizing each main step: sniffing, flow classi-
fication, data storing, data processing and fitting, model parameterization, and syn-
thetic traffic generation.

3.1 System Overview

The SIMITAR architecture is shown in Figure 6. It is composed of four components:
a Sniffer, an SQLite database, a Trace Analyzer, a Flow Generator. In the following, We

describe each of them.

3.2 Sniffer

A sniffer is a tool that can intercept and analyze internet packets from a given net-
work interface. Our Sniffer component collects network traffic data and classifies it into flows,
storing it on an SQLite database. The flow classification is based on the match of the informa-
tion on the header fields. It uses the same tracks used by SDN switches [Kreutz et al. 2015].

The data used on the matching are the following:

5> Design patterns are abstractions that aim to help the implementation and systems structuring [C++ Program-

ming: Code patterns design - Wikibooks, open books for an open world 2019].
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Figure 6 — Architecture of SIMITAR
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Figure 7 — SIMITAR’s sniffer hash-based flow classification

We implemented the first version of this component in Shell Script (Bash). Tshark®
[tshark - The Wireshark Network Analyzer 3.0.1 2019] was used to extract header fields, and

Awk to match the flows, and Sed/Awk to create the SQLite queries. This version was too slow

¢ Tshark is a command-line dump and analyze network traffic tool.
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to operate in real time on ethernet interfaces. On the other hand, this approach was fast to

implement and enabled the implementation of the other components.

The second and current version is in Python, and used Pyshark [pyshark - PyPI
2019] as a sniffer library. The Sniffer has a data structure we developed called OrderedSet. A
set is a list of elements with no repetition but does not keep track of the insertion order, but
our data structure can keep it. Also, the OrderedSet uses a 64 bit hash function from the FNV’
family. The listed header fields are inputs for a hash function. The hash value is added to the
ordered. The operation of insertion returns the insertion position (index of the hash-value on the

OrderedSet). We use the returned position as flowlID.

As future improvements for this component, we propose a more efficient implemen-
tation in C++ and data visualization for the collected data. In this way, we can optimize packet
processing. We discuss this in more depth in Chapter 6.

3.3 SQLite database

- flowlD integer "'\‘ arrivalTime  varchar
protocolLink integer | pkiSize integer
protocolMetwork  integer | tl integer
protocolTransport integer winsize integer
macsrc varchar s . 7 flowiD integer
macDst varchar | ? tracelD integer
netsre varchar
netDst varchar I
portsrc integer
portDst integer

< fracelD inteqer |‘\/ |~ traceName  varchar
\ captureDate  text
N commentaries text

e fracelD integer

Figure 8 — SIMITAR’s SQLite database relational model

The database stores the collected raw data from the traces for further analysis. The
Sniffer records data on it and the Trace Analyzer reads. We choose an SQLite database because
its specifications [Appropriate Uses For SQLite 2019] fits our purposes well. It is simple and
suitable for an amount of data less than terabytes. In Figure 8, we present the relational model®
of our database, which contains a set of features extracted from packets, along with the flowID

calculated by the Sniffer component.

The collision probability of a good 64 bits hash function in a table with 10000 items is about of 2.71e — 12.
A Relational Model is an approach for managing data in a database. Most of relational databases use SQL as
a query language [Date 2004].

8
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Figure 9 — Directory diagram of the schema of a Compact Trace Descriptor (CDT) file. On the
left, we present a dissected flow, and on the right a set of flows.

3.4 Trace Analyzer

This component is the core of our project. It creates a trace model via the analysis
of the collected data. The Trace Analyzer has the task to learn these features from raw trace data
(stored in the SQLite database) and generate an XML file to store a parameterized model. A
Compact Trace Descriptor (CTD) acts as a human and machine-readable file, which describes
a traffic trace through a set of flows, each of them represented by a set of parameters, such as
header information and analytical models. In Figure 9 we show a directory diagram of a CDT
file. It has many flow fields, and each one contains each estimated parameter . Now we will

describe each model part.

3.4.1 Flow features

We measured some flow-features directly from data, namely:

* Flow-level properties like duration of flow, start delay, number of packets per flow, num-

ber of KBytes per flow;

* Header fields, like protocols, QoS fields, ports, and addresses.
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Each one of these parameters is unique to each flow. Other features like packet-size
distribution and inter-packet times follow probability distributions. To represent these charac-

teristics, we used sets of stochastic-based models.

3.4.2 Inter-Packet Times

Flow

( 2 )
[ )
U \

riecees | HEBE—1BE BN |
\ I'd i

.
inter-session times

Packet Level

R

inter-packet times

Figure 10 — The schema of the modified version of the Harpoon algorithm we adopt on SIMI-
TAR.

To represent inter-packet times, we adopted a modified version of the Harpoon’s
traffic model. An in-depth explanation of the original model can be found at [Sommers ef al.
2004] and [Sommers e Barford 2004]. Harpoon uses a definition of each level, based on the
measurement of SYN and ACK TCP flags. It uses TCP flags (SYN) to classify packets at
different levels: file, session, and user level. On the other hand, we decide to do not use header
fields, but inter-packet times only to make this distinction. In that way, the model is not attached

to any protocol.

A graphical representation of our model is in the Figure 10. We defined three dif-
ferent layers of data transference to model and control: file, session, and flow. For SIMITAR, a
file is a sequence of consecutive packets transmitted continuously, with inter-packet times small
than a threshold. A file can be, for example, packets from a download, a UDP connection or a
single ICMP echo packet. A session refers to a sequence of multiple files transmitted between a
source and a destination, belonging to the same flow. The flow level refers to the conjunction of

flows, as classified by the Sniffer. Now, we will explain the SIMITAR operation for each layer.

In the flow-layer, the Trace Analyzer loads the flow arrival times from the database
and calculates the inter-packet times within the flow context; that means as if each flow was
independent traffic. At the session layer, we used a deterministic packet train (ON/OFF) model
for evaluating file transference times and times between files. We developed an algorithm called
calcOnOff. It calculates a set of ON (when the flow is transferring packets) and OFF times
(when the flow is idle) . It also determines the number of packets and bytes transferred for each

file. ON are going to be used as for actual traffic generators on the Flow Generator compo-
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nent, so we defined a minimum acceptable time for on periods equal to 100 ms. ON times can
be arbitrary and small, and they could be incompatible with acceptable ON periods for traffic
generators. Also in the case of just one packet, the ON time would be zero. So a minimum
acceptable time was set to solve these issues. The OFF times, on the other hand, are defined
by the constant session_cut_time”. This is the threshold value mentioned previously wich
distinguish files form sessions. If the time between two packets of the same flow is greater than
session_cut_time, we consider them belonging to a different file, so this time is a session
OFF time. In this case, we use the same value of the constant Request and Response timeout of
Swing [Vishwanath e Vahdat 2009] for the session_cut_time: 30 seconds. The Flow Gener-

th

ator component is responsible by the control of the ON/OFF periods on the traffic generation.

In the file-layer, we modeled the inter-packet times at the file level. We selected all
times smaller than session_cut_time 9, and all files within the same flow were considered
to follow the same model. We delegated the control of the inter-packet times to the underlying
packet generator engine. We ordered them, from the best to the worst. Currently, we are using

eight different stochastic functions parameterizations. We display each of them in Table 5 .

Table 5 — Functions and parameterizations used by SIMITAR

Function Linear Regression Maximum Likelihood Empirical!

Weibull v
Normal v
Exponential v v
Pareto v v
Cauchy v
Constant v

From the functions presented in the first column in Table 5, Weibull, Pareto, and
Cauchy are heavy-tailed (and self-similar processes). However, if the flow has less than 30
packets, just the constant model is evaluated. It is because numerical methods gave poor results
if the data sample is small. We sorted these models according to the Akaike Information Cri-
terion (AIC) as default [Varet 2014] [Yang 2005]. This methodology is explained in-depth in
Chapter 4 and illustrated in Figure 11. All these constants and modes of operation are modifiable

via command-line options.

3.4.3 Packet Sizes

Our approach for the packet size was much simpler. Since the majority of packet

size distributions found in real measurements are bi-modal [Castro et al. 2010] [Varet 2014]

9 In the code it is called DataProcessor: :m_session_cut_time

10" The class NetworkFlow makes this control
1" Empirical estimation, by calculation of the avarge, and standard deviation
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Figure 11 — Diagram of parameterization and model selection for inter-packet times and inter-
file times.

[Ostrowsky et al. 2007], we first sorted all packet sizes of flow into two modes. We defined a

packet-size cut value of 750 bytes, the same value adopted by [Ostrowsky et al. 2007].

We knew how many packets each mode has, and then we fitted a model to it. We
use three stochastic models: constant, exponential and normal. Since self-similarity does not
make sense for packet-sizes, we prefered to use just the simpler models. When there was no
packet for a model, we set a flag NO_MODEL, and when there was only a single packet, we used
the constant model. Then we calculated the BIC and AIC for each, but we decided to set the
constant model as the first.

As is possible to see in many works [Castro et al. 2010] [Ostrowsky et al. 2007],
since the standard deviation of each mode tends to be small, constant fittings give good approx-
imations. Also, it is computationally cheaper for the traffic generated than the other models,
since no calculation is needed for each packet sent. Since both A/C and BIC criteria will always

select the constant model as the worst, we decided to ignore this.

3.4.4 Compact Trace Descriptor

An example of the final result of all the methods is presented in the XML code
below. The code illustrates a single flow from a Compact Trace Descriptor (CDT) file. The
inter-packet times’ models are on tags "inter_packet_times" and the packet trains models
on tags "session_times". All the times are in seconds, and "inf" represents infinity. The

protocol of each layer is on the data field for each tag.

1 <flow start_delay="0.144400" duration="317.744333" ds_byte="0" n_kbytes="40"
— n_packets="344">
2 <link_layer mac_src="64:1c:67:69:51:bb"
< mac_dst="70:62:b8:9b:3e:d1">ETHERNET</1link_layer>
3 <network_layer src_ip="192.168.1.1" dst_ip="192.168.1.2"

—  ttl="64">IPV4</network_layer>
<transport_layer dst_port="2128" src_port="53">UDP</transport_layer>
<application_layer>DNS</application_layer>
<inter_packet_times>
<stochastic_model name="pareto-ml" aic="-1165.310696" bic="-1157.646931"
<  paraml="0.405085202535192" param2="0.002272655895996"/>
8 <stochastic_model name="pareto-lr" aic="-454.049749" bic="-446.385984"
< paraml="0.061065000000000" param2="0.002272655895996"/>
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<stochastic_model name="weibull" aic="-246.882037" bic="-239.218273"
—  paraml="0.120355000000000" param2="0.001629000000000"/>
<stochastic_model name="exponential-me" aic="486.370061" bic="494.033826"
<  paraml="1.340057495455104" param2="0.000000000000000" />
<stochastic_model name="normal" aic="1629.370900" bic="1637.034665"
— paraml="0.746236637899171" param2="2.626808289821357"/>
<stochastic_model name="exponential-lr" aic="3166.816047" bic="3174.479812"
—  paraml="0.009752000000000" param2="0.000000000000000" />
<stochastic_model name="cauchy" aic="31737.418442" bic="31745.082207"
<  paraml="0.000000000000194" param2="-3152.827055696396656" />
<stochastic_model name="constant" aic="inf" bic="inf"
— paraml="0.746236637899171" param2="0.000000000000000" />
</inter_packet_times>
<session_times on_times="29.22199798,73.40390396,151.84077454"
— off_times="30.85738373,32.42027283" n_packets="19,103,222"
— n_bytes="2272,12399,26689"/>
<packet_sizes n_packets="344" n_kbytes="40">
<ps_model n_packets="344" n_kbytes="40">
<stochastic_model name="constant" aic="inf" bic="inf"
— paraml="120.232558" param2="0.000000"/>
<stochastic_model name="normal" aic="2926.106952" bic="2933.788235"
« paraml="120.232558" param2="16.941453"/>
<stochastic_model name="exponential-me" aic="3987.126362"
<  bic="3994.807645" parami1="0.008317" param2="0.000000"/>
</ps_model>
<ps_mode2 n_packets="0" n_kbytes="0">
<stochastic_model name="no-model-selected" aic="inf" bic="inf"
— paraml="0.000000" param2="0.000000"/>
</ps_mode2>
</packet_sizes>
</flow>

3.5 Flow Generator

The Flow Generator handles the data on the Compact Trace Descriptor file, which

provides parameters for traffic generation. It crafts and controls each flow in a separate thread.

We have already implemented this component using Iperf and Libtins (C++ API) [libtins: packet

crafting and sniffing library 2019] as packet generators. It must follow the class hierarchy as pre-

sented in Figure 12. This component was designed using the factory design pattern, to simplify

its expansion and suppor

t12

This component itself is a multi-layer workload generator according to the typing

12

If the user wants to introduce support for a new packet generator engine, he ha