
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Ánderson dos Santos Paschoalon

SIMITAR: Synthetic and Realistic Network Traffic

Generation

SIMITAR: Geração de Tráfego de Rede Sintético e

Realístico

CAMPINAS

2019

Ánderson dos Santos Paschoalon

SIMITAR: Synthetic and Realistic Network Traffic

Generation

SIMITAR: Geração de Tráfego de Rede Sintético e

Realístico

Dissertation presented to the Faculty of Electri-
cal and Computer Engineering of the University
of Campinas in partial fulfillment of the require-
ments for the degree of Master in Electrical En-
gineering, in the area of Computer Engineering.

Dissertação apresentada à Faculdade de Engen-
haria Elétrica e Computação da Universidade
Estadual de Campinas como parte dos requisi-
tos exigidos para a obtenção do título de Mestre
em Engenharia Eletrica, na Àrea de Engenharia
de Computação.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este exemplar corresponde à ver-
são final da dissertação defendida
pelo aluno Ánderson dos Santos
Paschoalon , e orientada pelo Prof.
Dr. Christian Rodolfo Esteve Rothen-
berg

CAMPINAS

2019

COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato: Ánderson dos Santos Paschoalon RA: 083233

Data da Defesa: 17/12/2018

Título da Tese:

“SIMITAR: Synthetic and Realistic Network Traffic Generation”

“SIMITAR: Geração de Tráfego de Rede Sintético e Realístico”

Prof. Dr. Christian Rodolfo Esteve Rothenberg (FEEC/UNICAMP)

Prof. Dr. Lee Luan Ling (FEEC/UNICAMP)

Prof. Dr. Daniel Macêdo Batista (IME/USP)

Ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,

encontra-se no processo de vida acadêmica do aluno.

Nessa dedicatória, gostaria de agradecer a todos que me ajudarem por essa etapa, direta ou

indiretamente. Aqueles que me inspiraram e me motivaram a seguir por esse caminho, aqueles

que me ensinaram e me ajudaram durante o processo, e a aqueles cuja simples companhia me

deram energia e me motivaram para estar aqui onde estou hoje. Agradeço a todos, seja os que

estão listados abaixo, bem como aqueles cuja minha memória não me ajudou na escrita desse

texto.

Eu gostaria de agradecer a Universidade Estadual de Campinas (UNICAMP) e a Faculdade de

Engenharia Elétrica e Computação (FEEC) pela possibilidadede realizar meu curso de

mestrado, e pela infraestrutura que me possibilitou obter este titulo. Este estudo foi financiado

em parte pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) -

Código Financeiro 001

Gostaria de agradecer ao meu professor e orientador Christian Esteve Rothemberg, sem o qual,

seja pelo ensino, seja pela orientação e apoio durante o projeto, este trabalho não teria saído do

papel. Gostaria de agradecer toda sua paciência e entendimento por esses últimos anos. Sua

liderança será uma fonte de inspiração para mim para o restante de minha carreira, e ela está

apenas começando. Sem sua idéias inovadoras, suporte e encorajamento continuo, este projeto

não teria saído do papel. Especialmente pelo fato de que em pesquisa muitas vezes as coisas

não saem como o esperado, e temos que reiniciar do zero o processo. Eu gostaria de expressar

a minha gratisão e honra por ter um tão grande orentador, professor, lider e amigo durante

estes anos. Agradeço também a todos os Intrigers, colegas de grupo e de bancada, Alex, Javier,

Nathan, Cláudio, Daniel, Danny, Gyanesh, Rafael, Fabricio e todos os demais que não

mencionei neste texto. Agradeço a todos os demais colegas de laboratório do LCA, em

especial a Mijail, Suelen, Amadeu, Paul, ...

Agradeço a todos os companheiros e amigos que fiz em todos esses anos de

Unicamp.Agradeço a todos os grandes amigos e companheiros da Opus Dei, em especial

Padre Fabiano pelos conselhos, e ao meu amigo Denis, grande amigo pelo apoio.Agradeço aos

meus companheiros de minha antiga casa P7, e da moradia, em especial o meu amigo (quase

irmão) Lucas Zorzetti (Xildo) . Agradeço a minha namorada Rubia Agondi pelo se apoio,

ajuda, amor, compreensão e paciência, e por sempre me fazer acreditar em meu

trabalho.Agradeço a minha tão adorada família, a meu Pai Tirso José Paschoalon por todo sua

preocupação e ensino. A minha Mãe Rosângela dos Santos Mota, por todo o seu carinho e

amor. E a minha irmã Ariela Paschoalon, pela companhia e afeto. E por último e mais

importante, agradeço a Deus por todos seu dons, proteção e amor.

Acknowledgements

First, I would like to thanks all who have helped me, directly or indirectly. Those

who have inspired me to follow this path, those who have taught and helped me, and those

whose just their company had given me motivation and energy to be here today. I thank to all

I’ve listed down below, and all who I forgot to mention.

I would like to thank the State University of Campinas (UNICAMP) and the Faculty

of Electrical Engineering and Computing (FEEC) for the possibility of completing my master’s

degree course and for the infrastructure that enabled me to obtain this title.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

I would like to thank my advisor Prof. Dr. Christian Rothenberg for the trust and for

letting me be part of his selected group of students. I have to say that I’m extremely grateful for

all his patience and understanding all over these last years. Also, his leadership will be a source

of inspiration for the rest of my career, that is just beginning. I would not be able to imagine

the undertaking of this research without his innovative ideas, consistent support and continuous

encouragement. Specially encouragement, since sometimes, especially on research things do

not happen as we would expect, and start from the beginning is always a hard task. I would like

to express my gratitude honor for having such a great instructor, teacher, leader and friend all

for these past years.

Thanks to all the intrigers, desk, and group colleagues Alex, Javier, Nathan, Clau-

dio, Daniel, Gyanesh, Raphael, Fabricio and all who I have not mentioned in this text. Also,

thanks to all my LCA colleagues, especially Mijail, Suelen, Amadeu, Paul, ...

Thanks to all my colleagues and friends I made all these years I’ve been at Unicamp.

Thanks to all my Opus Dei friends, especially Priest Fabiano for all his advice, and

my friend Denis who have given me a huge support.

Thanks to all my house companions from my old home house P7, and all my “mora-

dia” friends, in particular, my friend (almost brother) Lucas Zorzetti (Xildo).

Thanks to my girlfriend Rubia Agondi, for all her support, help, love, understanding

and patience, and for making me always believe on my work.

Thanks to my lovely family, my father Tirso José Paschoalon for all his attention

and education. To my mother, Rosangela dos Santos Mota, for all her affection and love. And

to my sister Ariela Paschoaln, for her company and affection.

And last, and more important, I thank God for all his gifts, protection, and love.

“ratio in homine sicut Deus in mundo”

“reason in man is rather like God in the world.”

“razão no homem é como Deus no mundo”

De regno ad regem Cypri – Saint Thomas Aquinas (Santo Tomas de Aquino)

Abstract

Real network traffic has a different impact on network devices when compared to constant

traffic generated by tools like Iperf, even when both traffic profiles present the same average

throughput. Busty traffic may cause buffer overflows while constant traffic does not, decreasing

the measurement accuracy. The number of flows may have an impact on flow-oriented devices,

such as Software Defined Networking (SDN) switches and controllers. In scenarios where SDN

is expected to play an essential role in the future Internet, it becomes crucial that in-depth val-

idation of new technologies considering these aspects. Most of the open-source realistic traffic

generator tools have the modeling layer coupled to the traffic generator, making a challenge any

update to newer libraries. Most of the existing traffic generators support realistic traffic genera-

tion through a broad set of options to be manually but not automatically configured. As a result,

generating realistic traffic is a challenging project by itself.

In this work, we explore this subject in-depth. Our main research contributions are: (1) a review

on available solutions and network traffic modeling, and (2) the design and implementation of

the SIMITAR (SnIfing, ModellIng and TrAffic geneRation) traffic generator. The proposed ap-

proach provides a modeling framework separated from the traffic generator, being flow-oriented

and auto-configurable. We create and use Compact Trace Descriptor files as inputs - XML files

that describe traffic features for our traffic model. We are capable of replicating with accuracy

flow characteristics of all tested traffic traces, including the scaling features of some as well. We

give a particular focus on inter-packet times modeling, where we propose a methodology based

on information criteria for automating the process modeling and selection of the best model.

We also propose a cross-validation method to qualify the methodology.

Keywords: traffic generators; network traffic modelling; burstier traffic; realistic traffic; pcap

file; packet sniffing; inter packet times; linear regression; gradient descendent; Cumulative Dis-

tribution Function (CDF); maximum likelihood; Akaike Information Criterion (AIC); Bayesian

Information Criterion (BIC); packet trains; Wavelet Multiresolution Analisis; Hurst Exponent.

Resumo

Um tráfego de rede real possui um impacto diferente sobre os nós da rede se comparado ao

tráfego constante gerado por ferramentas como Iperf, mesmo com uma mesma taxa de transfer-

ência. Um tráfego em rajadas pode causar estouros de buffers enquanto um tráfego constante

não, e pode também diminuir a precisão das medições. O número de fluxos pode ter um impacto

nos nós orientados a fluxo, como switches e controladores SDN. Em um cenário em que as re-

des definidas por software desempenharão um papel essencial na Internet futura, uma validação

mais aprofundada das novas tecnologias, considerando esses aspectos, é crucial. Além disso, a

maioria das ferramentas geradoras de tráfego realistas de código aberto tem a camada de mod-

elagem acoplada ao gerador de pacotes, o que dificulta sua atualização para novas bibliotecas,

tornando-as freqüentemente desatualizadas. Por fim, a maioria das ferramentas open-source

que suportam a geração de tráfego realista, oferecem um grande conjunto de opções a serem

configuradas, mas não são auto configuráveis. Dessa forma a produção de um tráfego realista

customizado torna-se uma tarefa desafiadora.

Neste trabalho nos aprofundamos neste assunto. Como resultado final, para nossa pesquisa

destacamos duas contribuições principais: uma investigação de revisão das soluções disponíveis

e modelagem de tráfego de rede, e a proposta de nosso próprio gerador de tráfego chamado

SIMITAR (acrônimo para sniffing, modelagem e geração de tráfego em inglês). Esta tecnolo-

gia possui estruturas separadas de modelagem e geração de tráfego, sendo orientada a fluxos e

auto configurável. Ela cria e usa Descritores de Tráfego Compactos como arquivos de entrada

- Arquivos XML que descrevem características para o nosso modelo de tráfego. Atualmente

já conseguimos replicar com precisão métricas do nível de fluxos, e certas características de

escala. Demos um enfoque especial na modelagem de tempos entre pacotes, onde propomos

uma metodologia baseada em critérios de informação para automatizar a modelagem de pro-

cessos e seleção do melhor modelo. Também propusemos um método de validação para medir

a qualidade deste mesmo método.

Keywords: geradores de tráfego; modelagem de tráfego de rede; tráfego em rajadas; tráfego re-

alistico; arquivo pcap; captura de pacotes; tempo entre pacotes; regressão linear; gradiente de-

scendente; Função Distribuição Acumulada; máxima verossimilhança; Critério de informação

de Akaike; Critério de informação Bayesiano; trem de pacotes; Análise Wavelet de multires-

olução; Expoente de Hurst.

List of Figures

Figure 1 – Spiral research and development procedure 24

Figure 2 – Diagram representing different traffic generators, according to its abstraction

layer. 29

Figure 3 – How information about may be extracted from QQplots. 37

Figure 4 – Main architectural concept of SIMITAR: a tool to automatize many tasks on

traffic modelling and generation. 38

Figure 5 – an operation cycle of SIMITAR, emphasizing each main step: sniffing, flow

classification, data storing, data processing and fitting, model parameteriza-

tion, and synthetic traffic generation. 39

Figure 6 – Architecture of SIMITAR . 40

Figure 7 – SIMITAR’s sniffer hash-based flow classification 40

Figure 8 – SIMITAR’s SQLite database relational model 41

Figure 9 – Directory diagram of the schema of a Compact Trace Descriptor (CDT) file.

On the left, we present a dissected flow, and on the right a set of flows. . . . 42

Figure 10 – The schema of the modified version of the Harpoon algorithm we adopt on

SIMITAR. 43

Figure 11 – Diagram of parameterization and model selection for inter-packet times and

inter-file times. 45

Figure 12 – Class hierarchy of NetworkTrace and NetworkFlow, which enables the ab-

straction of the traffic generation model of the packet generation engine. . . 47

Figure 13 – Simplified-harpoon emission algorithm . 47

Figure 14 – Packet engine configuration method . 48

Figure 15 – Use case example for SIMITAR . 51

Figure 16 – Textual representation of the input and output data of calcOnOff. 54

Figure 17 – Linearized data and cost function J∇ of weibull linear regression 60

Figure 18 – CDF functions for the approximations of skype-pcap inter packet times, of

many stochastic functions. 66

Figure 19 – CDF functions for the approximations of skype-pcap inter packet times, of

many stochastic functions. 67

Figure 20 – Statistical parameters of skype-pcap and its approximations 68

Figure 21 – Statistical parameters of lan-gateway-pcap and its approximations 68

Figure 22 – Statistical parameters of lan-firewall-pcap and its approximations 69

Figure 23 – Statistical parameters of wan-pcap and its approximations 69

Figure 24 – Cost function JM for each one of the data-sets used in this validation process 70

Figure 25 – Comparision of the quality order of each model given by AIC and BIC . . . 71

Figure 26 – JM for each one of the datasets used in this validation process. 71

Figure 27 – Inter-packet times CDF function and stochastic models for firewall-pacap. . 72

Figure 28 – Comparison of the model selection order for BIC/AIC and JM for each pcap. 72

Figure 29 – Tree SDN topology emulated by mininet, and controlled by OpenDayLight

Beryllium . 78

Figure 30 – Single hop SDN topology emulated by mininet, and controlled by Open-

DayLight Beryllium . 79

Figure 31 – Traces bandwidth. 81

Figure 32 – Flow per seconds . 81

Figure 33 – Flows cumulative distributions. 82

Figure 34 – Wavelet multiresolution energy analysis. 82

Figure 35 – Usage of DPDK KNI interfaces. 86

Figure 36 – DddkDlow and DitgFlow . 86

Figure 37 – Component for measurement of traffic statistics: packet-loss, throughput,

available bandwidth, delay, RTT, and jitter. 88

Figure 38 – Using SIMITAR for generation synthetic pcap files, CTD files: a component

schema . 88

Figure 39 – Schematic of a feedback control system applied on synthetic traffic generation. 90

Figure 40 – Example of GANs application. GANs are commonly used for image synthe-

sis. Source: [Wu et al. 2017]. 91

Figure 41 – Color-map of inter-packet times from pcaps used on Chapter 4. 91

Figure 42 – This is a classical example of a self-similar figure, caled Sierpinski triangle. 107

Figure 43 – How information about data samples can be extracted from QQplots. De-

pending on the shape of the dot plot, . 109

Figure 44 – Shape of a distribution with right and left skew. 109

Figure 45 – QQplot of randomly generated data of a Cauchy process as samples and a

normal process as theoretical. We can identify a heavy-tail behavior on the

samples, compared to the theoretical. 109

Figure 46 – CDF functions for the approximations of lan-gateway-pcap inter packet

times, of many stochastic functions. 127

Figure 47 – CDF functions for the approximations of wan-pcap inter packet times, of

many stochastic functions. 128

Figure 48 – CDF functions for the approximations of lan-diurnal-firewall-pcap inter packet

times, of many stochastic functions. 129

Figure 49 – CDF functions for the approximations of lan-gateway-pcap inter packet

times, of many stochastic functions. 130

Figure 50 – CDF functions for the approximations of lan-diurnal-firewall-pcap inter packet

times, of many stochastic functions. 131

Figure 51 – CDF functions for the approximations of wan-pcap inter packet times, of

many stochastic functions. 132

Figure 52 – Data linearization, and linear regression cost history, from gradient descen-

dent for skype-pcap. 133

Figure 53 – Data linearization, and linear regression cost history, from gradient descen-

dent for lan-gateway-pcap. 134

Figure 54 – Data linearization, and linear regression cost history, from gradient descen-

dent for wan-pcap. 135

Figure 55 – Data linearization, and linear regression cost history, from gradient descen-

dent for lan-firewall-pcap. 136

Figure 56 – AIC and BIC summary for all the traces, presented in log scale. 137

Figure 57 – AIC and BIC summary for all the traces, presenting the order. 137

Figure 58 – Cost function JM summary. 137

Figure 59 – Sniffer UML Class Diagram . 138

Figure 60 – Trace Analyzer UML Class Diagram . 139

Figure 61 – Flow Generator UML Class Diagram . 140

List of Tables

Table 1 – Comparison of existing traffic generation tools. 22

Table 2 – Probability density function (PDF) and Cumulative distribution function (CDF)

of some random variables, and if this stochastic distribution has or not self-

similarity property. Some functions used to express these distributions are

defined at the Table 3 . 31

Table 3 – Definitions of some functions used by PDFs and CDFs 32

Table 4 – Two different studies evaluating the impact of packet size on the throughput.

Both compare many available open-source tools on different testbeds. In all

cases, small packet sizes penalize the throughput. Bigger packet sizes achieve

a higher throughput. 32

Table 5 – Functions and parameterizations used by SIMITAR 44

Table 6 – Application match table . 56

Table 7 – Linearized functions, and parameters estimators, used by the linear regression 60

Table 8 – Experimental results, including the estimated parameters and the BIC and

AIC values of the four pcap traces. 65

Table 9 – Relative difference(%) between AIC and BIC. 70

Table 10 – Experiments specification table . 78

Table 11 – Performed validations . 79

Table 12 – Sumary of results comparing the original traces (italic) and te traffic gener-

ated by SIMITAR, with the description of the scenario. 80

Table 13 – Overview of future work topics . 84

Table 14 – Summary of packet-level traffic generators. 115

Table 15 – Summary of multi-level and flow-level traffic generators. 116

Table 16 – Summary of application-level traffic generators. 116

Table 17 – Summary of replay-engines traffic generators. 116

Table 18 – Links for the traffic generators repositories 122

Acronyms

ACK Acknowledge. 43

AIC Akaike information criterion. 25

AICc Akaike’s Information Criterion Corrected. 89

API Application programming interface. 22

ARP Address Resolution Protocol. 112

BGP Border Gateway Protocol. 56

BIC Bayesian information criterion. 25

CDF Cumulative Distribution Function. 13, 31

CDT Compact Trace Descriptor. 23

CLI Command Line Interface. 116

DHCP Dynamic Host Configuration Protocol. 56

DIC Deviance Information Criterion. 89

DNS Domain Name System. 56

DUT Device Under Test. 22

flowID Flow Identifier. 41

FNV Fowler-Noll-Vo. 41

FPGA Field Programmable Gate Array. 118

FTP File Transfer Protocol. 33

GAN Generative adversarial network. 90

GUI Graphical User Interface. 116

HTTP Hypertext Transfer Protocol. 33

HTTPS Hyper Text Transfer Protocol Secure. 56

I/O Input/Output. 22

ICMP Internet Control Message Protocol. 43

IoT Internet of Things. 21

IP Internet Protocol. 33

IPv4 Internet Protocol Version 4. 33

IT Information Technology. 113

KNI Kernel NIC Interface. 85

LAN Local Area Network. 57

M2M Machine to Machine. 21

MAC Media Access Control. 112

MANO Management and Orchestration. 113

MDL Minimum Description Length. 89

MTU Maximum transmission unit. 33

NAT Network Address Translation. 116

NetFPGA Network FPGA. 28

NFVI NFV Infrastructure. 113

NIC Network Interface Card. 28

nMDL Normalized Minimum Description Length. 89

NOS Network Operational System. 112

NVF Network Function Virtualization. 21

PDF Probability Density Function. 13, 31

PT-MMPP Power-tail Markov-Modulated. 53

QoE Quality of service. 34

QoS Quality of service. 34

QQplot Quantile-quantile plot. 36

RTT Round Trip Time. 37

SCTP Stream Control Transmission Protocol. 117

SDN Software Defined Networking. 21

SIMITAR SnIffing, ModellIng, and TrAffic geneRation. 21

SNMP Simple Network Management Protocol. 56

SQL Structured Query Language. 41

SSH Secure Shell. 56

SYN Synchronize. 43

TACACS Terminal Access Controller Access-Control System. 56

TCP Transmission Control Protocol. 33

UDP User Datagram Protocol. 33

UML Unified Modeling Language. 24

VLAN Virtual LAN. 117

VNF Virtualized Network Function. 21

WAN Wide area network. 57

WMA Wavelet multi-resolution energy analysis. 35

WSA Wavelet-based scaling analysis. 35

XML Extensible Markup Language. 38

Contents

1 Introduction . 21

1.1 Motivation . 21

1.2 Related Work . 22

1.3 Objectives, Requirements, and Methodology 23

1.4 Outline . 25

2 Literature Review . 26

2.1 Traffic Generators . 26

2.1.1 Strategy . 27

2.1.2 Implementation . 28

2.2 Realistic Traffic and Traffic Modeling . 28

2.2.1 Realistic Network Traffic Generation 28

2.2.2 Inter-packet times (throughput) modeling 30

2.2.3 Packet-sizes modeling . 32

2.2.4 Packet-header fields . 33

2.2.5 Flow modeling . 33

2.2.6 Closed-loop (responsive) models . 34

2.3 Validation of Traffic Generator Tools . 34

2.3.1 Packet Based Metrics . 34

2.3.2 Flow Based Metrics . 34

2.3.3 Fractal and Scaling Characteristics . 35

2.3.4 QoS/QoE Related Metrics . 37

2.4 Conclusions . 37

3 SIMITAR: Architecture and Methodology 38

3.1 System Overview . 39

3.2 Sniffer . 39

3.3 SQLite database . 41

3.4 Trace Analyzer . 42

3.4.1 Flow features . 42

3.4.2 Inter-Packet Times . 43

3.4.3 Packet Sizes . 44

3.4.4 Compact Trace Descriptor . 45

3.5 Flow Generator . 46

3.6 Network Packet Generator . 49

3.7 Usability . 50

4 Modeling and Algorithms . 52

4.1 Background . 52

4.2 calcOnOff: an algorithm for estimating flow packet-train periods 53

4.3 Typical header fields by Application protocols 56

4.4 Automated Selection of Inter-Packet Times 56

4.4.1 Cross-validation Methodology . 56

4.4.2 Datasets . 57

4.4.3 Stochastic Processes Modeling and Selection 58

4.4.3.1 Stochastic Processes . 58

4.4.3.2 Linear Regression (Gradient descendant) 58

4.4.3.3 Direct Estimation . 60

4.4.3.4 Maximum Likelihood . 61

4.4.3.5 AIC and BIC . 61

4.4.4 Cross-validation method: Theoretical Foundation of the Cost Function . 61

4.5 Results . 64

4.6 Conclusions . 76

5 Proof of Concept Evaluation . 77

5.1 Testbed . 77

5.2 Methodology . 77

5.3 Results . 78

5.4 Conclusions . 83

6 Future Work . 84

6.1 Performance . 85

6.1.1 Modeling optimizations . 85

6.1.2 TinyFlows and flow merging . 85

6.1.3 Smarter Flow scheduler and thread management 85

6.1.4 DPDK KNI Interfaces . 85

6.1.5 Multi-thread C++ Sniffer . 86

6.2 Tool Support . 86

6.2.1 Inter-packet times on TinsFlow . 86

6.2.2 D-ITG, Ostinato, and DPDK Flow Generators: DitgFlow, OstinatoFlow,

DdpkFlow . 86

6.2.3 ZigBee protocol Support . 87

6.3 Calibration . 87

6.3.1 min_time . 87

6.3.2 min_on_time . 87

6.3.3 session_cut_time . 87

6.4 New Components . 87

6.4.1 Traffic Measurer . 87

6.4.2 Pcap files crafter . 88

6.4.3 Python/Lua Flow Generator . 89

6.5 New Research Topics . 89

6.5.1 Automated Selection of Inter-packet times models 2.0 89

6.5.2 How how to craft malicious flows? . 89

6.5.3 Envelope and Markovian-based traffic models 89

6.5.4 Fractal and multi-fractal modeling: models, Hurst exponent and Hölder

exponent. 90

6.5.5 Hurst-exponent feedback control system for ON/OFF times 90

6.5.6 Traffic generation based on Generative Adversarial Networks (GANs) . 90

6.5.7 Realistic WAN, Wifi and IoT traffic 91

6.5.8 SIMITAR vs Harpoon . 92

6.5.9 How well traffic generators simulate reproduce stochastic processes? . . 92

6.5.10 Traffic Generator Tools Survey . 92

7 Final Conclusions . 93

Bibliography . 95

A Probability and Math Revision . 104

A.1 Random variable . 104

A.2 Probability Density Function (PDF) . 104

A.3 Cumulative Distribution Function (CDF) . 104

A.4 Expected value, Mean, Variance and Standard Deviation 104

A.5 Stochastic Process . 105

A.6 Correlation (Pearson correlation coefficient) 105

A.7 Autocorrelation of a finite time series . 106

A.8 Self-similarity . 106

A.9 Hurst Exponent . 107

A.10 Heavy-tailed distributions . 108

A.11 QQplot analysis . 108

A.12 Akaike information criterion (AIC) and Bayesian information criterion (BIC) . 110

A.13 Gradient Descendent Algorithm . 111

B Computer Networks Review . 112

B.1 Network Stack . 112

B.2 Software Defined Networking (SDN) . 112

B.3 Network Function Virtualization (NFV) . 113

B.4 Internet of Things (IoT) . 113

C Traffic Generators Survey . 114

C.1 Introduction . 114

C.2 Traffic generator tools . 114

C.2.1 Traffic Generators - Feature Survey 114

C.2.2 Packet-level traffic generators . 115

C.2.3 Application-level/Special-scenarios traffic generators 119

C.2.4 Flow-level and multi-level traffic generators 120

C.2.5 Others traffic generation tools . 121

C.2.6 Traffic Generators – Repository Survey 121

C.3 Validation of Ethernet traffic generators: some use cases 121

C.3.1 Swing . 121

C.3.2 Harpoon . 123

C.3.3 D-ITG . 124

C.3.4 sourcesOnOff . 124

C.3.5 MoonGen . 125

C.3.6 LegoTG . 125

D Chapter 4 Aditional Plots . 126

E UML Project Diagrams . 138

F Academic contributions . 141

21

1 Introduction

1.1 Motivation

The type of traffic used for performing evaluation matters; this is a fact. Stud-

ies show that realistic Ethernet traffic provides different and variable load characteristics on

routers [Sommers e Barford 2004], even with the same average bandwidth consumption, show-

ing that constant traffic is not sufficient for complete technology validation. This conclusion

indicates that tests which employ traffic generators with constant rates are not enough for com-

plete validation of new technologies. Bursty traffic can cause packet losses and buffer overflows,

impacting on network performance and measurement accuracy [Cai et al. 2009]. Small packets

tend to degrade application performance [Srivastava et al. 2014]. Furthermore, realistic traffic

is essential on security research, such as for the evaluation of firewall middleboxes, studies on

intrusion, and malicious workloads [Botta et al. 2012].

New networking scenarios such as SDN and virtualized networks (NVF and VNFs)

become harder to predict in terms of performance compared to hardware-based technologies,

due to the multiple layers of software and platform parameters demanding validation in a broad-

ening range of use cases [Han et al. 2015]. Another critical question about the interaction be-

tween application-network has had the flow-oriented operation of SDN networks, in which

each new flow arriving on an SDN switch demands further communication with the controller.

Therefore the controller can be a bottleneck on the switches performance. Also, new types of

traffic patterns introduced by IoT and Machine-to-Machine (M2M) communication [Soltanmo-

hammadi et al. 2016] increase the complexity of the network traffic characterization, turning

pre-defined models used by traffic generators obsolete.

Furthermore, realistic traffic generators are essential security research, since the

generation of realistic workloads is essential for evaluation of firewall middleboxes. It includes

studies of intrusion, anomaly detection, and malicious workloads. By realistic, we refer to traf-

fic that represents well the traffic features, such as protocols, payloads, and protocols, able to

emulate benign and malicious workloads.

Aiming to address these gaps, this dissertation introduces SIMITAR, an auto-

configurable network traffic generator. SIMITAR stands for SnIffing, ModellIng, and TrAffic

geneRation, which correspond to the main operation processes of the proposed framework.

SIMITAR has an application independent traffic model, that can represent a wide variety of

scenarios. It also decouples the traffic modeling and packet-generation layer, using a factory

design pattern, enabling its application on different scenarios, and technology update, via tech-

nology abstraction. SIMITAR code and all scripts used in this dissertation are available at

Chapter 1. Introduction 22

GitHub [Paschoalon 2019] for validation, experiment reproducibility, and re-use purposes.

1.2 Related Work

Traffic generators are tools to transfer or inject network packets in a controlled

manner, aiming not at the actual data transfer data but at the functional validation and perfor-

mance benchmarking of devices under test (DUT) for varying technologies or scenarios. The

open-source community offers a vast variety of traffic generators. Since most have been built for

specific goals, each uses different methods for traffic generation, and offer control over different

traffic features, such as throughput, packet-sizes, protocols, and so on [Botta et al. 2012].

Traffic generators can be classified into two main groups: replay engines [Varet

2014] and model-based tools. Replay engines, such as TCPReplay and TCPivo [Feng et al.

2003], work replicating in a given network interface a given packet capture file. These tools

can generate realistic traffic but have their constraints. They are deterministic since will always

reproduce the same traffic from the packet capture. Replay engines require storage of packet

capture, what can be a problem for traffics of high bandwidth traffic. Also, they assume the user

has access to packet captures appropriate for his testing purposes, which is not always true, due

to a limited number of public sources. Model-based tools rely on software models to replicate

one or more characteristics of the traffic.

Model-based tools have their limitations as well. Traffic generators that emulate the

applications, are designed to represent only specific scenarios on computer networking, and

are not enough to represent a large variety of scenarios. Many traffic generator tools only of-

fer constant-rate and Poisson models, which does not represent well the complexity of internet

traffic [Leland et al. 1994]. Other tools such as D-ITG offer dozens of parameters and mod-

els to be configured, but delegate to the user the task of creating, validate and script his traffic

model. To the best of our knowledge, we found only two open-source auto-configurable tools:

Swing and Harpoon. However, none of them has an extensible architecture, which turns support-

ing modern and fast I/O APIs (such as DPDK [DPDK – Data Plane Development Kit 2019])

a hard task. Table 1 present a summary of the above mentioned features for some relevant

Table 1 – Comparison of existing traffic generation tools.

Solution Auto-configurable Realistic Traffic Traffic Custumization Extensibility
Harpoon yes yes yes no
D-ITG no yes yes no
Swing yes yes no no

Ostinato no no yes yes
LegoTG no no yes yes

sourcesOnOff no yes yes no
Iperf no no yes no

SIMITAR yes yes yes yes

Chapter 1. Introduction 23

traffic generators: Swing [Vishwanath e Vahdat 2009], Harpoon [Sommers e Barford 2004],

sourcesOnOff [Varet 2014], D-ITG [Botta et al. 2012], Iperf [iPerf - The network bandwidth

measurement tool 2019], Ostinato [Ostinato Network Traffic Generator and Analyzer 2016] and

LegoTG [Bartlett e Mirkovic 2015].

1.3 Objectives, Requirements, and Methodology

Based on the provided context, we defined a set of targets for our research:

1. Survey: Evaluate open-source Ethernet workload tools and address features each one has.

We wanted to know the existing solutions, innovation points on the current state of affairs,

and how can we some could be integrated and reused by our solution;

2. Background studies: Study the characterization and mathematical modeling of Ethernet

traffic, what are the best models and challenges.

3. Definition of Realistic Traffic: Define what realistic traffic generation is, and how to

measure if any synthetic traffic is realistic or not.

4. Design: Create a general method for modeling and parameterization of Ethernet traffic;

5. Development: Create a self-configurable tool that observes and uses real network traffic,

and reproduce its behavior characteristics, avoiding the storage of large pcap files.

Towards the above-stated objectives, we had identified a set of requirements of the

envisioned traffic generation tool should meet:

• Auto-configurable: It must be able to extract data from real traffic and store in a database,

and use it to parametrize its traffic model. It must be able to obtain data from real-time

traffics and from pcap files;

• Technology independent: It must have a flow-based abstract model for traffic generation,

not attached to any specific technology.

• Extensibility: traffic modeling and generation must be decoupled. Ideally, it must be able

to use as a traffic generator engine any library or traffic generator tool;

• Simple usage: It must be easy to use. It has to take as input a Compact Trace Descriptor,

just as a traffic replay engine (such as TCPreplay) would take a pcap file;

• Human readable model: it must produce a human-readable file as output that describes

our traffic using our abstract model. We call this file a Compact Trace Descriptor (CDT);

Chapter 1. Introduction 25

1.4 Outline

In this introductory Chapter, we had presented an abstract of state of affairs, and the

main goals of our research. Chapter 2 presents a survey on open-source traffic generator tools,

summarizing the benefits, and features supported by each one. The chapter offers a review of

topics on realistic traffic generation and defines important concepts on network traffic modeling;

such as self-similarity and heavy-tailed distributions. Also, the chapter presents a survey on

techniques for validating traffic generator tools

Chapter 3 presents SIMITAR traffic generator. We describe its low-level require-

ments and define an architecture and their algorithms. We explain its operation and suggest

some use cases. In Chapter 4, we go deep on the modeling process we had developed for our

traffic generator. We validate the effectiveness of Information Criteria AIC and BIC as a method

selection of stochastic models for Ethernet traffic. We also discuss some other algorithms we

developed such as calcOnOff and the application protocol guesser. In Chapter 5, we define

a set of metrics based on previous tests on validation of traffic generators found in the litera-

ture. Here, we focus on the packet, flow, and scaling metrics. We test our tool in an emulated

SDN testbed with Mininet [Mininet – An Instant Virtual Network on your Laptop (or other PC)

2019]2, using OpenDayLight [The OpenDayLight Platform 2019] as the SDN controller.

Chapter 6 highlights future actions to improve SIMITAR on realism and perfor-

mance along with other future research avenues, including improving its computational perfor-

mance, expand it to new APIs of traffic generation and calibration of its constants. Finally, we

end the work presentation with a conclusion (Chapter 7).

Appendices A, B, and C provide supplementary materials for Chapter 2: Review

of Mathematical Concepts, Computer Networks, and Traffic Generators. Appendix D provides

charts in addition to those presented in Chapter 4, and Appendix E complements the presenta-

tion of the architecture discussed in Chapter 3 by presenting SIMITAR UML class diagrams.

2 Mininet is a network emulator. It can run a collection of hosts, switches, routers and links over a single Linux
kernel, using lightweight virtualization [Introduction to Mininet · mininet/mininet Wiki 2019].

26

2 Literature Review

2.1 Traffic Generators

Traffic generators are tools to transfer or inject network packets in a controlled man-

ner, aiming not at the actual data transfer data, but validation and performance benchmarking

of devices under test (DUT) [Molnár et al. 2013]. There is a vast variety of traffic generators

described on literature [Botta et al. 2012] and available in the open-source community1.

Together with many traffic generators, there are many open-source APIs for traffic

generation. Some are low-level APIs, which enables precise control of each packet generated,

and are used in the implementation of traffic generators2. Also, they are computationally more

efficient compared to high-level APIs for traffic generation. We’ve listed some low-level APIs

below:

• GNU Socket API (C) [Sockets 2019];

• Libpcap (C) [Tcpdump & Libpcap 2019];

• Libtins (C++) [libtins: packet crafting and sniffing library 2019];

• Scapy (Python) [Scapy – Packet crafting for Python2 and Python3 2019];

• DPDK (C) [DPDK – Data Plane Development Kit 2019].

We also have high-level APIs, usually provide by traffic generator, which simplifies

the programming of custom traffic. For example:

• D-ITG API (C) [D-ITG, Distributed Internet Traffic Generator 2015];

• Ostinato API (Python) [Ostinato Network Traffic Generator and Analyzer 2016];

• MoonGen API (Lua) [MoonGen 2019];

• DPDK-Pktgen scripting interface (Lua) [Getting Started with Pktgen 2015].

1 http://www.icir.org/models/trafficgenerators.html
2 For example: D-ITG [Botta et al. 2012] and Iperf [iPerf - The network bandwidth measurement tool 2019] uses

the GNU Socket API [Sockets 2019], Ostinato [Ostinato Network Traffic Generator and Analyzer 2016] uses
libpcap [Tcpdump & Libpcap 2019], and MoonGen [Emmerich et al. 2015] uses DPDK [DPDK – Data Plane
Development Kit 2019].

Chapter 2. Literature Review 27

There are many taxonomies for traffic generators available in the literature. Classify

traffic generators is usually "blur" process since packet generators feature many times fall into

more than one class. We present two taxonomies:

• Traffic generation strategy;

• Traffic generator implementation.

2.1.1 Strategy

Traffic generators can be classified into two main groups: replay engines [Varet

2014] and model-based tools:

• Replay engines: These tools can read pcap files, and inject copies of the packet on a

network interface. Eg.: TCPReplay [Tcpreplay home 2019], TCPivo [Feng et al. 2003],

D-ITG [Botta et al. 2012].

• Model-based traffic generators: they generate synthetic traffic, controlling one or more

feature of the traffic; such as header fields, packet sizes and inter-packet times.

Model-based traffic generators can be sub-classified based on the abstraction layer

the model operates. We follow here the taxonomy presented by Botta et al. [Botta et al. 2010].

Figure 2 shows these traffic generators organized in a layer diagram.

• Application-level traffic generators: they try to emulate the behavior of network ap-

plications, simulating real workloads stochastically or responsively3. As an example, we

have Surge, which mimics the communication between clients and web servers;

• Flow-level traffic generators: they can reproduce flow characteristics, such as flow du-

ration, start times distributions, and temporal traffic volumes. Harpoon can extract these

parameters from Cisco NetFlow data, collected from routers;

• Packet-level traffic generators: it is the most used traffic generators. They can control

packet-features like inter-departure times, packet size, throughput and packets per second.

For example, D-ITG [Botta et al. 2012], and TG [Traffic Generator 2011] can control

inter-packet times via stochastic distributions. However, most of them only permit the

configuration of constant-rate models, by setting the packet rate or the traffic bandwidth,

such as Iperf [iPerf - The network bandwidth measurement tool 2019], BRUNO [Antichi

et al. 2008], and Ostinato [Ostinato Network Traffic Generator and Analyzer 2016].

3 Responsiveness refers to the ability of responding the changes in real-time. In the traffic generator’s context, it
refers to the ability of changing inner parameters depending on patterns of arriving packets.

Chapter 2. Literature Review 28

• Multi-level traffic generators: this is a more recent class of network traffic generator.

They take into account existing interaction among each layer of the network stack, to

create network traffic as close as possible to reality. The most important tool is Swing

[Vishwanath e Vahdat 2009] which input collected pcap files.

We have done an extensive survey on packet generators available on the open-source

community and classified them according to the first taxonomy. Also, we summarized the main

features of each one. The result of this work is the Tables 14, 15, 16, and 17, in the Appendix C.

We also have a list of the tool repositories at Table 18.

2.1.2 Implementation

• Software-only traffic generators: Implementations of traffic generators utterly indepen-

dent of its running hardware platform. This implementation comprehends most of traffic

generator tools, including all previously mentioned.

• Software and hardware-dependent traffic generators: are traffic generators imple-

mented in software, but dependent on the underlying hardware. The most preeminent ex-

amples of this class used DPDK [DPDK – Data Plane Development Kit 2019] as packet-

generator API. DPDK works directly on the NIC interface, avoiding Operational Systems

overheads. As cited on its official website, this approach permits huge precision. As ex-

amples we have MoonGen [Emmerich et al. 2015] and DPDK-PktGen [Getting Started

with Pktgen 2015]

• Hardware traffic generators: these open-source traffic generators are implemented in

hardware description language (VHDL/Verilog), and work on NetFPGAs. Some exam-

ples of implementations are PacketGenerator [Covington et al. 2009], Caliper [Ghobadi

et al. 2012], and OSNT Packet Generator [Antichi et al. 2014].

2.2 Realistic Traffic and Traffic Modeling

2.2.1 Realistic Network Traffic Generation

As presented, there is a considerable amount of open-source traffic generators avail-

able, each one of them with many different sets of features available. However, on the genera-

tion of realistic workload, the set of possibilities becomes much more restricted. On the other

hand, there are many works on characterization, modeling, and simulation of different types

of network workload. As stated by Botta et al. [Botta et al. 2012], a synthetic network traffic

generation over real networks should be able to:

Chapter 2. Literature Review 29

Figure 2 – Diagram representing different traffic generators, according to its abstraction layer.

1. Capture real traces complexity over different scenarios;

2. Be able to custom change some specific properties of the generated traffic ;

3. Return measure indicators of performance experienced by the workload.

As we have found out over the literature in our research, the measure of realism of

a traffic generator is given by how well a traffic generator can represent features at the level its

model works. For example:

• Swing: Vishwanath and Vahdat [Vishwanath e Vahdat 2009] validate their work against

packet, flow, and application level features;

• Harpoon: Sommers and Barford [Sommers e Barford 2004] validate harpoon on flow-

level features;

• D-ITG: Botta et al. [Botta et al. 2012] validate their work against application-level and

packet-level features;

• sourcesOnOff: Varet and Larrieu validate sourcesOnOff on packet-level features [Varet

2014].

Therefore, we defined a realistic traffic generator as follows:

Chapter 2. Literature Review 30

Realistic Traffic Generator

A realistic traffic generator is a tool that its model can reproduce real traces complexity

and behavior, at the same level of abstraction its traffic model works: on the packet, flow,

application or multi-level. In other words, the validation techniques must give similar

results to the real and synthetic traces.

We are going to discuss metrics on validation of traffic generators in the next sec-

tion. The rest of this section will highlight topics on network traffic modeling. We are not going

to discuss application modeling, since each one may have their specific behavior. We are going

to discuss points that apply to any traffic in general:

• Inter-packet times (throughput) modeling;

• Packet-sizes modeling;

• Packet-header fields;

• Flow modeling;

• Closed-loop behavior modeling.

2.2.2 Inter-packet times (throughput) modeling

Classical models for network traffic generation were the same used in telephone

traffic, such as Poisson or Poisson-related. They can describe the randomness of an Ethernet

link but cannot capture the presence of "burstiness" in a long-term time scale, such as traffic

"spikes" on long-range "ripples". Lerand et al. [Leland et al. 1994], points in his seminal work,

in 1994, that the nature of the Ethernet traffic is self-similar. It has a fractal-like shape since

characteristics seen in a small time scale should appear on a long-scale as well, that have been

referred, in the most of the time, as long-range dependence or degree of long-range dependence

(LRD). One way to identify if a process is self-similar is by checking its Hurst parameter, or

Hurst exponent H, as a measure of the "burstiness" and LRD. A random process is self-similar

and LRD if 0.5 < H < 1 [Rongcai e Shuo 2010] (Appendix A).

Willinger et al. pointed out that the Ethernet traffic has a high variability (or infi-

nite variance) [Willinger et al. 1997]. Processes with such characteristic are said to be heavy-

tailed. In practical terms, that means a sudden discontinuous change can always occur. To be

heavy-tailed means that the stochastic distribution is not exponentially bounded. In other words,

some value far from the mean does not have a negligible probability of occurrence. We can ex-

press self-similar and heavy-tailed processes using heavy-tailed stochastic distributions, such

Chapter 2. Literature Review 31

Table 2 – Probability density function (PDF) and Cumulative distribution function (CDF) of
some random variables, and if this stochastic distribution has or not self-similarity
property. Some functions used to express these distributions are defined at the Table 3

Distribution PDF Equation CDF Equation Parameters Heavy-tailed

Poisson f [k] = e−λ λ k

k!
F [k] = Γ(⌊k+1⌋,λ)

⌊k⌋!
λ > 0 (mean,

variance) no

Binomial f [k] =
(

n
k

)
pk(1− p)n−k F [k] = I1−p(n− k,1+ k)

n > 0 (trials)
p > 0 (success) no

Normal f (t) = 1√
2σ2π

e
(t−µ)2

2σ2 F(t) = 1
2 [1+ erf(t−µ

σ
√

2
)]

µ (mean)
σ > 0 (std.dev) no

Exponential f (t) =

{
λe−λ t ; t ≥ 0

0; t < 0
F(t) = 1− e−λ t

λ > 0 (rate) no

Pareto f (t) =

{
αtα

m

tα+1 ; t ≥ tm

0; t < tm
F(t) =

{
1− (tm

t
)α ; t ≥ tm

0; t < tm

α > 0 (shape)
tm > 0 (scale) yes

Cauchy f (t) = 1
πγ [

γ2

(t−t0)2+γ2] F(t) = 1
π arctan(t−t0

γ)+ 1
2

γ > 0 (scale)
t0 > 0 (location) yes

Weibull f (t) =

{
α

β α tα−1e(t/β)α
; t ≥ 0

0; t < 0
F(t) =

{
1− e−(t/β)α

; t ≥ 0

0; t < 0

α > 0 (shape)
β > 0 (scale) yes

Gamma f (t) = β α

Γ(α)t
α−1e−β t F(t) = 1− 1

Γ(α)Γ(α,βx)
α > 0 (shape)
β > 0 (rate) no

Beta f (t) = xα−1(1−x)β−1

B(α,β)
F(t) = Ix(α,β)

α > 0 (shape)
β > 0 (shape) no

Log-normal f (t) = 1
tσ
√

2π
e
− (ln(x)−µ)2

2σ2 F(t) = 1
2 +

1
2erf[ln(x)−µ√

2σ
]

µ (location)
σ > 0 (shape) yes

Chi-squared f (t) = 1

2
k
2 Γ(k

2)
t

k
2−1e−

t
2 F(t) = 1

Γ(k
2)

γ(k
2 ,

x
2) k ∈ N>0 no

as Pareto and Weibull. Table 2 shows the reference for these stochastic distributions. In the last

column, we indicate if the distribution is or not heavy-tailed.

These concepts of High variability and Self-similarity are called Noah and Joseph

Effects [Willinger et al. 1997]. Willinger et al. point that the superposition of many ON/OFF

sources (or packet trains) using ON and OFF times that obey the Noah Effect (heavy-tailed

probabilistic functions), also obey the Joseph effect. That means, it is a self-similar process and

can be used to describe Ethernet traffic. Some works on the literature on synthetic traffic uses

this principle, like sourcesOnOff [Varet 2014], or have to heavy-tailed processes, such as like

D-ITG. Furthermore, some later studies advocate the use of more advanced multiscaling models

(multifractal), addressed by investigations that uses envelope processes [Melo e Fonseca 2005].

Chapter 2. Literature Review 32

Table 3 – Definitions of some functions used by PDFs and CDFs

Function Definition

Regularized Incomplete beta function Ix(a,b) =
B(x|a,b)
B(a,b)

Incomplete beta function B(x|a,b) = ∫ x
0 ta−1(1− t)(b−1)dt

Beta function B(x|a,b) = ∫ 1
0 ta−1(1− t)(b−1)dt

Error function erf(x) = 1√
π

∫−x
x e−t2

dt

Lower incomplete Gamma function γ(s,x) = xsΓ(s)e−x ∑
∞
k=0

xk

Γ(s+k+1)

Table 4 – Two different studies evaluating the impact of packet size on the throughput. Both
compare many available open-source tools on different testbeds. In all cases, small
packet sizes penalize the throughput. Bigger packet sizes achieve a higher throughput.

Traffic Generators
Article and setup Maximum bit-rate Maximum bit-rate

Tool
at small packet

sizes
at big packet

sizes
Article: Comparative study of various
Traffic Generator Tools [Srivastava et al. 2014] ;

PackETH 150 @(64 bytes) 1745 @(1408 bytes)

Setup: Linux (Centos 6.2,
Kernel version 2.6.32),

Ostinato 135 @(64 bytes) 2850 @(1408 bytes)

Inter(R) Xeon(R) CPU with 2.96GHz,
RAM of 64GB , NIC Mellanox

D-ITG 62 @(64 bytes) 1950 @(1408 bytes),

Technologies MT25418 [ConnectXVPI
PCIe 2.0 2.5GT/s - IB DDR] 10 Bbps.

9808 @(1460 bytes,
12 threads)

Protocol: TCP Iperf *
8450 @(1460 bytes,
12 threads)

Article: Performance Monitoring of Various
Network Traffic Generators [Kolahi et al. 2011];

Iperf 46.0 @(128 bytes) 93.1 @(1408 bytes)

Setup: Intel (R) Pentium 4(R), CPU
with 3.0GHz, RAM 1GB,

Netperf 46.0 @(128 bytes) 89.9 @(1408 bytes)

NIC Intel Pro/100 Adapter
(100Mbps),

D-ITG 38.1 @(128 bytes) 83.1 @(1408 bytes)

Hard Drivers Seagate Barracuda
7200 series with 20BG.
Protocol:TCP

IP Traffic 61.0 @(128 bytes) 76.7 @(1408 bytes)

2.2.3 Packet-sizes modeling

The literature shows that the packet size of a trace may result in a considerable

impact in a trace throughput since small packets cause significant overhead on packet pro-

cessing [Rongcai e Shuo 2010] [Kolahi et al. 2011]. Table 4 summarizes the results from two

different works about throughput impact of packet sizes. On packet size distributions’ charac-

Chapter 2. Literature Review 33

terization, we can find many works as well. For example, Castro et al. pointed that 90% of UDP

packets were smaller than 500 bytes, and most packets transmitted using TCP have 40 bytes

(acknowledgment) and 1500 bytes (Maximum Transmission Unit, MTU) [Castro et al. 2010].

Ostrowsky et al. found that on UDP traces, the modes of two regions were 120 and 1350 bytes,

with a cut-off value of 750 bytes. They also found that roughly UDP packets constituted 20% of

the total number of packets on captures [Ostrowsky et al. 2007]. Castro et al. points on his work

that captured traces on routers were all bimodal, and the majority is TCP. However, the size of

each mode may change depending on the application. For example, an HTTP traffic tends to

have a mode closer to the MTU compared to an FTP capture [Castro et al. 2010].

2.2.4 Packet-header fields

Accurate replication of network traffic should be able to control packet headers such

as protocols, ports, addresses, and so on. Traffic generators provide support for these features,

more frequently in a limited way. Most offer support just standard protocols, such as TCP, UDP,

and IPv4. On the other hands, there are some which provide a vast variety of support and control

over packet headers like PackETH [PACKETH 2015] and D-ITG [D-ITG, Distributed Internet

Traffic Generator 2015]. Other tools are even able to enable someone to extend this feature and

develop support to new protocols. For example, Ostinato and Seagull permit the customization

and creation of protocols [Seagull – Open Source tool for IMS testing 2006].

2.2.5 Flow modeling

Some packet-level traffic generators permit the control of flow generation, mostly

manually through an API or scripting. In terms of automatic flow configuration, an example

is Harpoon [Sommers et al. 2004], which can to automatically configure its flows, using as

input NetFlow Cisco traffic traces to automatically setting parameters. Harpoon deals with flow

modeling in three different levels: file level, session level, and user level, not dealing with packet

level at all. In the file level, Harpoon model two parameters: the files size and the time interval

between consecutive file requests, called inter-file request time. The middle level is the session

level, that consist of sequences files transfer between two distinct IP addresses. The session

level has three components: the IP spatial distribution, the second is the inter-session start times

and the third is the session duration. The last level is the user level. In Harpoon, "users" are

divided on "TCP" and "UDP" users, which conduct consecutive session using these protocols.

This level has two components: the user ON time, and the number of active users. By modeling

the number of users, Harpoon can reproduce temporal (diurnal) traffic volumes.

Chapter 2. Literature Review 34

2.2.6 Closed-loop (responsive) models

The closed-loop operation means that the traffic generator uses feedback to recon-

figure its model. That means the traffic generator can change its behavior at run time accord-

ing to the observation made in real-time, changing the traffic created. These modifications in-

volve changes on parameters of statistical distributions of inter-departure time and packet size,

for example. Swing [Vishwanath e Vahdat 2009] and application-level traffic generators like

Surge [Barford e Crovella 1998] and GenSyn [Heegaard 2000] uses this strategy.

2.3 Validation of Traffic Generator Tools

After the implementation of a traffic generator, it needs to be validated. Thus, we

need a set of proof of concepts to evaluate if it reached its purposes or not. Researchers have

been proposed many validation techniques, according to the traffic generator intended behavior.

Magyesi and Szabó [Molnár et al. 2013] presented a survey of these techniques, grouped by

type of metric. The authors classified the techniques into four categories: packet based metrics,

flow-based metrics, scaling characteristics, and QoS/QoE related metrics. Here we present a

short review of each group of these validation techniques.

2.3.1 Packet Based Metrics

Packet-based metrics are the most used metrics in the validation of traffic generators

[Molnár et al. 2013]. The most relevant packet based metrics are throughput [Botta et al. 2010]

[Srivastava et al. 2014] [Kolahi et al. 2011] [Emmerich et al. 2015] (bytes and packets), packet

size distribution [Castro et al. 2010] and inter-packet time distribution (inter-arrival and inter-

departure) [Varet 2014] [Botta et al. 2012].

2.3.2 Flow Based Metrics

Since SDN device, which execute flow-based operations are becoming widespread,

flow-based metrics are becoming increasingly relevant [Molnár et al. 2013] [Kreutz et al. 2015].

Magyesi and Szabó [Molnár et al. 2013] consider the essential flow metrics, the flow size dis-

tribution, and volume. The flow volume stands for the number of flows of traffic. The flow size

distribution is a measure of the time-length of the flows in network traffic. The flow volume

corresponds to the number of flows that a device must process simultaneously. Moreover, the

flow sizes define how much time each of these instances will run.

Chapter 2. Literature Review 35

2.3.3 Fractal and Scaling Characteristics

Hurst Exponent

Second order characteristics such as "burstiness" and long-range dependence are

responsible for the complex nature of internet traffic [Molnár et al. 2013]. Due to its non-

stationary nature, traditional methods fail to extract useful information [Molnár et al. 2013].

The first analysis found in the literature to extract fractal characteristics was made by Lerand

et al. estimating the Hurst exponent [Leland et al. 1994]. They demonstrated the self-similar

nature of the Ethernet traffic. As explained in the previous section, a self-similar process should

have a Hurst exponent valued larger than 0.5 and smaller than 1 (0.5 < H < 1).

Wavelet-based Analysis

Over the years, wavelet-based analysis has become an efficient way to reveal corre-

lations, bursts and scaling nature of the Ethernet traffic [Molnár et al. 2013]. Many papers have

used wavelet-based analysisciteswing-paper [Huang et al. 2001] [Abry e Veitch 1998]. Huang

et al. [Huang et al. 2001] and Abry and Veitch [Abry e Veitch 1998] offer an extensible ex-

planation of wavelet-based scaling analysis (WSA) or wavelet multi-resolution energy analysis

(WMA).

We will now make a brief derivation of the energy curves used in wavelet analysis

(WMA). First, consider a time series X0,k for k = 0,1, ...2n:

{X0,k}= {X0,0,X0,1, ...,X0,2n} (2.1)

Then, we roughly approximate X0 in another time-series X1 with half of the original resolution,

but using
√

2 as normalization factor:

X1,k =
1√
2
(X0,2k +X0,2k+1) (2.2)

Taking the differences, instead of the averages (equation 2.2), evaluate the so-called details.

d1,k =
1√
2
(X0,2k −X0,2k+1) (2.3)

Continuing this process respectively , writing coarser time series X2 from X1, until we reach Xn.

Therefore, we will get a collection of details:

{d j,k}= {d1,0,d1,1, ...,d1,2n/2 , ...,dn,0} (2.4)

Chapter 2. Literature Review 36

This collection of details d j,k are called Discrete Haar Wavelet Transform. Using the details, we

can calculate the energy function E j, under the scale j, using:

E j =
1

N j

N j−1

∑
k=0

|d j,k|2; j = 1,2, ...,n (2.5)

were N j is the total number of coefficients at scale j. Plotting a graph of log(E j) as a function o

the scale j, we will obtain a wavelet multiresolution energy curve.

On energy wavelet multiresolution energy curves, it is possible to capture three cen-

tral behaviors, according to the time-scale. On periodic time series, the Energy values will be

small. Time-series with no error in the time-periods of the scales j, the energy values E j will be

zero. So periodicity will be sensed if the value of the energy function decrease. Perfect white

noise time series maintains the same value of the energy function. So an approximately con-

stant value for the energy function E j indicates white noise behavior (which can be represented

by a Poisson process [Grigoriu 2004]). On self-similar time series, the energy function log(E j)

grows approximately linearly with the scale j. Following these rules, we can quickly identify pe-

riodicities, and self-similar and Poisson process characteristics, just seeing if it decays, growths,

or constant-shapes on wavelet energy plots.

Later studies suggested the use of multi-fractal models, instead of the self-similar

models (also called monofractal) [Molnár et al. 2013] [Ostrowsky et al. 2007]. Since there is

a lack of multiscaling analysis in validation of traffic generation in the literature, this type of

analysis will stay for future works.

QQplots Analysis

Another way to analyze scaling characteristics is through QQplots (Appendix A)

[WILK e GNANADESIKAN 1968] [Understanding Q-Q Plots | University of Virginia Library

Research Data Services + Sciences 2019] [Q–Q plot 2019]. QQplot is a visual method to com-

pare sample data with a specific stochastic distribution. To create a QQplot, we must order the

orders the measured data values (samples) from the smallest to largest. Then, we have to plots

the samples against the expected value given by the model we want to validate. The sample

values appear along the y-axis and the theoretical values along the x-axis, as we represent on

the Figure 3. Finally, we draw a line with 45 degrees of inclination, representing how the sam-

ples would behave if they had the same behavior of the theoretical model. The more linear, the

more the data is likely to be expressed by this specific stochastic distribution. Also, Depending

on how the curve be behaves, some features of the empirical dataset compared to the theo-

retical can be observed, such as heavy-tail, light-tail, bimodal behavior, and the curve skew

(Figure 3). We present a complete tutorial about this subject in the Appendix A.

Chapter 3. SIMITAR: Architecture and Methodology 41

to operate in real time on ethernet interfaces. On the other hand, this approach was fast to

implement and enabled the implementation of the other components.

The second and current version is in Python, and used Pyshark [pyshark · PyPI

2019] as a sniffer library. The Sniffer has a data structure we developed called OrderedSet. A

set is a list of elements with no repetition but does not keep track of the insertion order, but

our data structure can keep it. Also, the OrderedSet uses a 64 bit hash function from the FNV7

family. The listed header fields are inputs for a hash function. The hash value is added to the

ordered. The operation of insertion returns the insertion position (index of the hash-value on the

OrderedSet). We use the returned position as flowID.

As future improvements for this component, we propose a more efficient implemen-

tation in C++ and data visualization for the collected data. In this way, we can optimize packet

processing. We discuss this in more depth in Chapter 6.

3.3 SQLite database

Figure 8 – SIMITAR’s SQLite database relational model

The database stores the collected raw data from the traces for further analysis. The

Sniffer records data on it and the Trace Analyzer reads. We choose an SQLite database because

its specifications [Appropriate Uses For SQLite 2019] fits our purposes well. It is simple and

suitable for an amount of data less than terabytes. In Figure 8, we present the relational model8

of our database, which contains a set of features extracted from packets, along with the flowID

calculated by the Sniffer component.

7 The collision probability of a good 64 bits hash function in a table with 10000 items is about of 2.71e−12.
8 A Relational Model is an approach for managing data in a database. Most of relational databases use SQL as

a query language [Date 2004].

Chapter 3. SIMITAR: Architecture and Methodology 42

(a) (b)

Figure 9 – Directory diagram of the schema of a Compact Trace Descriptor (CDT) file. On the
left, we present a dissected flow, and on the right a set of flows.

3.4 Trace Analyzer

This component is the core of our project. It creates a trace model via the analysis

of the collected data. The Trace Analyzer has the task to learn these features from raw trace data

(stored in the SQLite database) and generate an XML file to store a parameterized model. A

Compact Trace Descriptor (CTD) acts as a human and machine-readable file, which describes

a traffic trace through a set of flows, each of them represented by a set of parameters, such as

header information and analytical models. In Figure 9 we show a directory diagram of a CDT

file. It has many flow fields, and each one contains each estimated parameter . Now we will

describe each model part.

3.4.1 Flow features

We measured some flow-features directly from data, namely:

• Flow-level properties like duration of flow, start delay, number of packets per flow, num-

ber of KBytes per flow;

• Header fields, like protocols, QoS fields, ports, and addresses.

Chapter 3. SIMITAR: Architecture and Methodology 44

nent, so we defined a minimum acceptable time for on periods equal to 100 ms. ON times can

be arbitrary and small, and they could be incompatible with acceptable ON periods for traffic

generators. Also in the case of just one packet, the ON time would be zero. So a minimum

acceptable time was set to solve these issues. The OFF times, on the other hand, are defined

by the constant session_cut_time9. This is the threshold value mentioned previously wich

distinguish files form sessions. If the time between two packets of the same flow is greater than

session_cut_time, we consider them belonging to a different file, so this time is a session

OFF time. In this case, we use the same value of the constant Request and Response timeout of

Swing [Vishwanath e Vahdat 2009] for the session_cut_time: 30 seconds. The Flow Gener-

ator component10 is responsible by the control of the ON/OFF periods on the traffic generation.

In the file-layer, we modeled the inter-packet times at the file level. We selected all

times smaller than session_cut_time 9, and all files within the same flow were considered

to follow the same model. We delegated the control of the inter-packet times to the underlying

packet generator engine. We ordered them, from the best to the worst. Currently, we are using

eight different stochastic functions parameterizations. We display each of them in Table 5 .

Table 5 – Functions and parameterizations used by SIMITAR

Function Linear Regression Maximum Likelihood Empirical11

Weibull X

Normal X

Exponential X X

Pareto X X

Cauchy X

Constant X

From the functions presented in the first column in Table 5, Weibull, Pareto, and

Cauchy are heavy-tailed (and self-similar processes). However, if the flow has less than 30

packets, just the constant model is evaluated. It is because numerical methods gave poor results

if the data sample is small. We sorted these models according to the Akaike Information Cri-

terion (AIC) as default [Varet 2014] [Yang 2005]. This methodology is explained in-depth in

Chapter 4 and illustrated in Figure 11. All these constants and modes of operation are modifiable

via command-line options.

3.4.3 Packet Sizes

Our approach for the packet size was much simpler. Since the majority of packet

size distributions found in real measurements are bi-modal [Castro et al. 2010] [Varet 2014]

9 In the code it is called DataProcessor::m_session_cut_time
10 The class NetworkFlow makes this control
11 Empirical estimation, by calculation of the avarge, and standard deviation

Chapter 3. SIMITAR: Architecture and Methodology 46

9 <stochastic_model name="weibull" aic="-246.882037" bic="-239.218273"

param1="0.120355000000000" param2="0.001629000000000"/>→֒
10 <stochastic_model name="exponential-me" aic="486.370061" bic="494.033826"

param1="1.340057495455104" param2="0.000000000000000"/>→֒
11 <stochastic_model name="normal" aic="1629.370900" bic="1637.034665"

param1="0.746236637899171" param2="2.626808289821357"/>→֒
12 <stochastic_model name="exponential-lr" aic="3166.816047" bic="3174.479812"

param1="0.009752000000000" param2="0.000000000000000"/>→֒
13 <stochastic_model name="cauchy" aic="31737.418442" bic="31745.082207"

param1="0.000000000000194" param2="-3152.827055696396656"/>→֒
14 <stochastic_model name="constant" aic="inf" bic="inf"

param1="0.746236637899171" param2="0.000000000000000"/>→֒
15 </inter_packet_times>

16 <session_times on_times="29.22199798,73.40390396,151.84077454"

off_times="30.85738373,32.42027283" n_packets="19,103,222"

n_bytes="2272,12399,26689"/>

→֒
→֒

17 <packet_sizes n_packets="344" n_kbytes="40">

18 <ps_mode1 n_packets="344" n_kbytes="40">

19 <stochastic_model name="constant" aic="inf" bic="inf"

param1="120.232558" param2="0.000000"/>→֒
20 <stochastic_model name="normal" aic="2926.106952" bic="2933.788235"

param1="120.232558" param2="16.941453"/>→֒
21 <stochastic_model name="exponential-me" aic="3987.126362"

bic="3994.807645" param1="0.008317" param2="0.000000"/>→֒
22 </ps_mode1>

23 <ps_mode2 n_packets="0" n_kbytes="0">

24 <stochastic_model name="no-model-selected" aic="inf" bic="inf"

param1="0.000000" param2="0.000000"/>→֒
25 </ps_mode2>

26 </packet_sizes>

27 </flow>

3.5 Flow Generator

The Flow Generator handles the data on the Compact Trace Descriptor file, which

provides parameters for traffic generation. It crafts and controls each flow in a separate thread.

We have already implemented this component using Iperf and Libtins (C++ API) [libtins: packet

crafting and sniffing library 2019] as packet generators. It must follow the class hierarchy as pre-

sented in Figure 12. This component was designed using the factory design pattern, to simplify

its expansion and support12

This component itself is a multi-layer workload generator according to the typing

12 If the user wants to introduce support for a new packet generator engine, he has to implement a derived class
of DummyFlow, such as in Figure 12. In the current release of SIMITAR, we already have IperfFlow and
TinsFlow, and DitgFlow. This new class needs to be static, and the support must be implemented on the
factory NetworkFlowFactory. For closed loop packet-crafters (the ones that need to establish a connection to
generate traffic), two methods must be implemented: flowGenerate() and server(). flowGenerate() is
responsible for sending a single file, as defined on de Figure 10. The server() methods must implement the
reception of n files. For open-loop packet crafters (the ones whose just inject packets but do not establishes a
connection), such as the one we implemented using Libtins, does not need the server-side implemented.

Chapter 3. SIMITAR: Architecture and Methodology 49

3 {

4 // create command to generate the traffic

5 std::string strCommand;

6 std::string localhost = getNetworkSrcAddr();

7 strCommand += " -t " + std::to_string(onTime);

8 strCommand += " -k " + std::to_string(nbytes / 1024);

9 strCommand += " -a " + getNetworkDstAddr();

10

11 // configure protocol

12 if (this->getTransportProtocol() == PROTOCOL__TCP)

13 strCommand += " -T TCP -D ";

14 else if (this->getTransportProtocol() == PROTOCOL__UDP)

15 strCommand += " -T UDP ";

16 else if (this->getTransportProtocol() == PROTOCOL__ICMP)

17 strCommand += " -T ICMP ";

18

19 //configure inter-packet time model, just Weibull or Constant

20 StochasticModelFit idtModel;

21 for(uint i = 0;;i++)

22 {

23 idtModel = this->getInterDepertureTimeModel(i);

24 if(idtModel.modelName() == WEIBULL)

25 {

26 strCommand += " -W " + std::to_string(idtModel.param1()) + " " +

std::to_string(idtModel.param2());→֒
27 break;

28 }

29 else if (idtModel.modelName() == CONSTANT)

30 {

31 strCommand += " -C " + std::to_string(nbytes/(1024*onTime));

32 break;

33 }

34 }

35

36 // it uses C strings as arguments

37 // it is not blocking, so it must block until finishes

38 int rc = DITGsend(localhost.c_str(), command.c_str()); // D-ITG API

39 usleep(onTime*10e6); // D-ITG uses miliseconds as time unity

40 if (rc != 0)

41 {

42 PLOG_ERROR << "DITGsend() return value was" << rc ; // our log macro for erros

43 exit(EXIT_FAILURE);

44 }

45 }

3.6 Network Packet Generator

A network packet generator is a tool or library that should provide its API or script

interface for the Flow Generator component. With this engine, the user must be able to send

packets and control attributes such as sending time, bandwidth, number of packets, protocols,

and so on. This means, any available parameter form the Compact Trace Descriptor.

Chapter 3. SIMITAR: Architecture and Methodology 50

3.7 Usability

SIMITAR is composed of three main command-line applications, whose give com-

mand line access to the Sniffer, Trace Analyzer and Flow Generator, respectively:

• sniffer-cli.py;

• trace-analyzer;

• simitar-gen (the actual traffic generator).

Below we show some usage commands of SIMITAR’s components. The

sniffer-cli.py application creates a new trace entry on the database using the command

option new. Then the Trace Analyzer can create a Compact Trace Descriptor using the same

trace entry. We can change the constants used by the Trace Analyzer by the command line op-

tion. As a traffic generator (simitar-gen), SIMITAR may work as a client or a server. Working

as a server is necessary for closed-loop packet-generator engines; tools that require establishing

a connection before generating the traffic, such as Iperf and D-ITG. It will just work passively.

Working as a client it is acting as a traffic emitter. Open loop packet-crafter tools such as Libtins

do not require server operation to send the traffic. In the case of closed-loop tools, the destina-

tion IP addresses must be explicitly given in the command line by the options –dst-list-ip

or –dst-ip.

1 # @ SIMITAR/, load enviroment variables

2 source data/config/simitar-workspace-config.sh

3

4 # @ SIMITAR/sniffer/, execute to sniff the eth0 interface, and create a trace entry

called "intrig" in the database→֒
5 ./sniffer-cli.py new intrig live eth0

6

7 # @ SIMITAR/sniffer/, execute this command to list all traces recorded in the database

8 ./sniffer-cli.py list

9

10 # @ SIMITAR/trace-analyzer/, execute this command to create two Compact Trace

Descriptors, called intrig.ms.xml and intrig.sec.xml. The first is parameterized

using milliseconds, and de second uses seconds as time unity.

→֒
→֒

11 ./trace-analyzer --trace intrig

12

13 # @ SIMITAR/simitar-gen/, execute these commands to generate traffic using the

intrig.sec.xml compact trace descriptor. It is stored at the directory

"../data/xml/".

→֒
→֒

14 # Libtins

15 ./simitar-gen --tool tins --mode client --ether eth0 --xml ../data/xml/intrig.sec.xml

16 # Iperf

17 ./simitar-gen --tool iperf --mode client --ether eth0 --xml ../data/xml/intrig.sec.xml

--dst-ip 10.0.0.2→֒
18 ./simitar-gen --tool iperf --mode server --ether eth0 --xml ../data/xml/intrig.sec.xml

52

4 Modeling and Algorithms

This chapter describes in-depth the implementation of the traffic modeling algo-

rithms mentioned in Chapter 3. The first section gives a brief survey of other works that pre-

sented methodologies for a parameterizing stochastic process to describe internet traffic (inter-

packet times and packet-trains). This introduction shows a scenario where there is no "one-fits-

all" model. The best model always depends on the type of traffic.

Many consolidate works investigate the nature of internet traffic, and many others

on the modeling of stochastic functions for specific scenarios. However, there are not as many on

model choice automation. In the second section, we discuss and cross-validate our methodology

for automating the choice of inter-packet times processes. We select inter-packet times models

using information criteria (AIC and BIC) to rank the models from the best to the worst. Since,

to the best of our knowledge, there was no previous validation of the effectiveness of AIC and

BIC for ranking information criteria, we developed our cross-validation methodology to test

their effectiveness.

In the third section, we present our algorithm called "calcOnOff", a method to

estimate packet trains periods (ON and OFF times) of an arbitrary flow, which do not rely on

header fields, but just times between packets. Finally, the fourth section shows our strategy for

guessing application protocols from flows, protocols using common transport header fields.

We use refer to two different cost functions on this chapter. The first is the Gadient

Descendent Cost function, we refer as J∇, since nabla (∇) is the notation used to represent

gradients. The second is our cross-validation cost function, we refer as JM, since it is used to

rank stochastic models (M).

4.1 Background

There are many works devoted to studying the nature of the Ethernet traffic [Leland

et al. 1994]. Classic Ethernet models used Poisson related processes to model traffic1. A Poisson

process represents the probability of events occur with a known average rate, and independently

of the last occurrence [Haight 1967].

However, studies made by Leland et al. showed that the Ethernet traffic has a self-

similar and fractal nature. Even if they can represent the randomness of Ethernet traffic, simple

Poisson processes cannot express traffic "burstiness" on a long-term timescale, such as traf-

1 In our study case we used two Poisson related processes, both using exponential distributions: Exponential(Me)
and Exponential(LR). Exponential distributions are considered continuous versions of the Poisson process.
Since we are using time as a real number, we preferred to use just exponential distributions, for simplicity.

Chapter 4. Modeling and Algorithms 53

fic "spikes" on long-range "ripples". These characteristics are an indication of the fractal and

self-similar nature of the traffic, that usually we express by distributions with infinite vari-

ance, called heavy-tailed. Heavy-tail means that a stochastic distribution is not exponentially

bounded [Varet 2014], and can guarantee self-similarity via Joseph and Noah effects [Willinger

et al. 1997]. Examples of heavy-tailed functions are Weibull, Pareto, Cauchy. However, these

distributions may guarantee self-similarity, but not necessarily they will ensure other features

like good correlation and same average packet rate [Molnár et al. 2013].

There are plenty of works in the literature which proposes processes and method-

ologies for modeling times between packets and packet trains [Leland et al. 1994] [Ju et al.

2009] [Rongcai e Shuo 2010] [Willinger et al. 1997] [Cevizci et al. 2006] [Markovitch e Krieger

2000] [Field et al. 2004] [Kushida e Shibata 2002] [Fiorini 1999] [Kronewitter 2006] [Field et

al. 2004]. Fiorini [Fiorini 1999] presented a heavy-tailed ON/OFF model, which represented the

traffic generated by many sources. The model emulated a multiple source power-tail Markov-

Modulated (PT-MMPP) ON/OFF process, where the ON times have been power-tail distributed.

They achieve analytical performance measurements using Linear Algebra Queueing Theory.

Kreban and Clearwater [Kleban e Clearwater 2003] presented a model for times

between job submissions from multiple users over a supercomputer. They have shown that the

Weibull probability functions can express well small and high values of inter-job submission

times. They also have tested exponential, lognormal and Pareto distributions. The Exponential

distribution has not represented well long-range values because of it had felt-off too fast. On the

other hand, the Pareto problem was that it had felt too slow. Lognormal have fitted well small

values, but its performance had been weak on larger ones. Kronewitter [Kronewitter 2006] has

presented a model of scheduling traffic of many heavy-tail sources. On his work, he had used

many Pareto sources to represent the traffic. To estimate Pareto shape (parameter α) he had

used linear regression.

4.2 calcOnOff: an algorithm for estimating flow packet-train pe-

riods

As we discussed in Chapter 3, we developed an algorithm we call calcOnOff, listed

on Algorithm 1. This procedure estimates the sizes of packet trains, as periods between packet

trains in a flow context. This procedure receives as input values:

1. arrivalTime: the list of packets arrivals on time on the flow. For example, if we have

five packets arriving every two seconds, we would have: arrivalTime = [0, 2, 4,

6, 8];

Chapter 4. Modeling and Algorithms 54

Figure 16 – Textual representation of the input and output data of calcOnOff.

2. deltaTime: the list of inter-packet times on the flow. Following the same example pre-

sented before, we would have: deltaTime = [2, 2, 2, 2].

3. cutTime: the time threshold that defines if we are still in the same train of packets, or a

new one.

4. minOnTime: is the minimum length of flow ON time. minOnTime were used mainly to

avoid ON times of zero seconds, in the case of only one packet, or when the time between

packets is smaller than the operational system precision.

5. psSizeList: the list of packet sizes in bytes.

For example, suppose a list of arrival times:

arrivalTime = [0.0, 0.3 0.5, 0.6, 4.0, 4.3, 4.4 , 10.0]

We would have the follow list of inter-packet times:

deltaTime = [0.3, 0.2, 0.1, 3.4, 0.3, 0.1, 5.6]

Suppose the list of packet sizes is:

psSizeList = [10, 20, 10, 30, 10, 40, 10, 50]

With a minOnTime of 0.1 and a cutTime of 3 seconds, we would have the following

output:

onTimes = [0.6, 0.4, 0.1]

offTimes = [3.4, 5.6]

pktCounter = [4, 3, 1]

fileSize = [70, 60, 50]

Figure 16 shows the same example, but with a text visualization, to simplify the

visualization of the grouped data.

Chapter 4. Modeling and Algorithms 55

Algorithm 1 calcOnOff

1: function CALCONOFF(arrivalTime,deltaTime,cutTime,minOnTime)
2: m = deltaTime.length()−1
3: j = 0
4: lastO f f = 0
5: pktCounterSum = 0
6: f ileSizeSum = 0
7: for i = 0 : m do
8: pktCounterSum = pktCounterSum+1
9: f ileSizeSum = f ileSizeSum+ psSizeList[i,1]

10: if deltaTime[i]> cutTime then
11: if i == 1 then ⊲ if the first is session-off time
12: j++
13: onTimes.push(minOnTime)
14: o f f Times.push(deltaTime[i])
15: pktCounter.push(pktCounterSum)
16: f ileSize.push(f ileSizeSum)
17: pktCounterSum = 0
18: f ileSizeSum = 0
19: else ⊲ base case
20: pktCounter.push(pktCounterSum)
21: f ileSize.push(f ileSizeSum)
22: pktCounterSum = 0
23: f ileSizeSum = 0
24: if j == 0 then
25: onTimes.push(arrivalTime[i−1])
26: o f f Times.push(deltaTime[i])
27: else ⊲ others on times
28: onTimes.push(max(deltaTime[i−1]−deltaTime[lastO f f],minOnTime))
29: o f f Times.push(deltaTime[i])
30: end if
31: lastO f f = i

32: end if
33: end if
34: end for
35: pktCounterSum = pktCounterSum+1
36: f ileSizeSum = f ileSizeSum+ psSizeList[m]
37: if lastO f f == m−1 then ⊲ if last is session-off
38: onTimes.push(minOnTime)
39: else ⊲ base last case
40: if lastO f f 6= 0 then
41: onTimes.push(arrivalTime[m]−arrivalTime[lastO f f])
42: else
43: onTimes.push(arrivalTime[m]) ⊲ there was just on time
44: end if
45: end if
46: pktCounter.push(pktCounterSum)
47: f ileSize.push(f ileSizeSum)
48: return onTimes,o f f Times, pktCounter, f ileSize

49: end function

Chapter 4. Modeling and Algorithms 56

4.3 Typical header fields by Application protocols

We also developed a simple test to guess the application protocol, based on the port

numbers and the transport protocol used by each flow. If a flow matches the port number, and

the transport protocol, it matches an application protocol, following the rules on Table 6.

Table 6 – Application match table

Application Protocol Transport Protocols Transport Ports
HTTPS TCP 443
FTP TCP 20, 21
HTTP TCP 80
BGP TCP 179
DHCP UDP 67, 68
SNMP UDP, TCP 161
DNS UDP, TCP 53
SSH UDP, TCP 22
Telnet UDP, TCP 23
TACACS UDP, TCP 49

4.4 Automated Selection of Inter-Packet Times

There many consolidate works which have investigated the nature of internet traffic,

and many others that had proposed processes to describe network traffic on specific scenarios.

But not as many on model choice automation. We propose and evaluate the use of the informa-

tion criteria BIC (Bayesian Information Criterion) and AIC (Akaike Information Criterion) as

suitable methods for automated model selection for inter-packet times.

4.4.1 Cross-validation Methodology

We then define our cross-validation method based on a cost function JM, which is an

aggregator of traditional and critical metrics used on validation of stochastic models and traffic

generators: Correlation(quality of the model), Average inter packet-time (related with the traffic

Throughput), and Hurst Exponent (traffic fractal level). JM assign weights from the best to the

worst representation for each property of each trace model by using randomly generated data

with our stochastic fittings. Through this process, we choose the best-fitted traffic model under

evaluation. Afterward, we compare the results achieved by AIC/BIC and our cost function.

Given the approach mentioned above, we show that AIC/BIC methods provide an intelligent

stochastic process selection strategy for inter-packet times models. We summarize the validation

process in the steps below:

Chapter 4. Modeling and Algorithms 57

1. We have selected many pcap files, representing different types of network scenarios. We

extracted from these files the list of inter-packet times.

2. Using a set of stochastic functions, and parameterization methods, we defined a list of

candidate stochastic processes to represent the inter-packet time’s distribution for each

dataset.

3. For each dataset, AIC and BIC were used to rank the processes, from the best to the worst,

for each dataset.

4. Using each process from step four, we generated random data and estimated the cost

function J. We have repeated the random data generation 30 times, and the parameters

used on the cost function had ion had a confidence interval of 95%. Finally, we have

ranked the processes from the best to the worst for each dataset.

5. Finally, we had two independent rankings, the one we wanted to validate, and others

based on the literature. We compared the results.

We also present some QQplots to visually compare the random-generated data and

the original data-set.

4.4.2 Datasets

We will use four pcap files, where three are publicly available, to enable

the reproduction of the simulations described in this chapter. The first is a lightweight

Skype capture, found in Wireshark wiki 2, located at https://wiki.wireshark.org/Samp2,

located at https://wiki.wireshark.org/SampleCaptures. The file name is SkypeIRC.cap.

We will call this trace skype-pcap. The second is a CAIDA3http://www.caida.org/home/

capture, and we can found it at https://data.caida.org/datasets/passive-2016/equinix-

chicago/20160121-130000.UTC. Access to this file requires a login, so is re-

quired the creation and approval of a new account. The pcap’s file name is

equinix-chicago.dirB.20160121-135641.UTC.anon.pcap.gz. We call it wan-pcap4.

The third we capture in our laboratory LAN, through a period of 1 hour in a firewall

gateway between our local and external network. We call it lan-firewall-pcap. The fourth is a

capture of a busy private network access point to the Internet, available online on TCPreplay

website5, called bigFlows.pcap. We will refer to it lan-gateway-pcap.

2 https://wiki.wireshark.org/
3 http://www.caida.org/home/
4 WAN stands for Wide Area Network
5 http://tcpreplay.appneta.com/wiki/captures.html

Chapter 4. Modeling and Algorithms 58

We retrieved inter-packet times from the traffic traces and divided them into two

equally sized datasets. We split the data based on the index of the array we use to store. Odd-

indexed elements have been used as a training dataset, and even-indexed for cross-validation;

to avoid data over-fitting.

4.4.3 Stochastic Processes Modeling and Selection

4.4.3.1 Stochastic Processes

We have adopted five stochastic functions (Weibull, Normal, Exponential, Pareto

and Cauchy), and three methods for parameters estimation: Linear Regression, Direct esti-

mation, and Maximum Likelihood, totaling seven stochastic processes :

1. Weibull via Linear Regression;

2. Normal via Direct Estimation;

3. Exponential via Direct Estimation, we refer as Exponential(LR);

4. Exponential via Linear Regression, we refer as Exponential(MLH);

5. Pareto via Linear Regression, we refer as Pareto(LR);

6. Pareto via Maximum Likelihood, we refer as Pareto(MLH);

7. Cauchy via Linear Regression.

The data that have been used for modeling was the training dataset. AIC, BIC and

the cost function have used the cross-validation dataset. Since the time samples resolution used

were of 10−6s, all values equal to zero had been set to 5 · 10−8s, to avoid division by zero.

To avoid divergence in tangent operation used Cauchy linearization process, we have floor-

limited and upper-limited the inter-packet CDF values by 10−6 and 0.999999, respectively. We

implemented this prototype using Octave and Python. We upload all the code and data from

these experiments on Github [Paschoalon 2019].

4.4.3.2 Linear Regression (Gradient descendant)

Linear regression is a method for estimating the best linear curve in the format:

y = ax+b (4.1)

Chapter 4. Modeling and Algorithms 59

to fit a given data set. We can use linear regression to estimate parameters of a

non-linear curve expressing it on a linear format. For example, the Weibull CDF for t > 0 is:

F(t|α,β) = F(t) = 1− e−(t/β)α
(4.2)

Manipulating the equation:

α ln(t)−α ln(β) = ln(− ln(1−F(t))) (4.3)

If we call x = ln(t) and y = ln(− ln(1−F(t))), we found a linear equation, where

a = α and b = −α ln(β). Having in hands an estimation of the empirical CDF of our data

samples, we apply the x and y definitions to linearize the data.

Using the gradient descendant, we find an estimation of the linear coefficients: â

and b̂. Using the inverse function of linear factors, we see the Weibull estimated parameters α̂

and β̂ .

α = a (4.4)

β = e−(b/a) (4.5)

The gradient descendent consists of minimizing a cost function J∇(θ), whose value

decrease if the approximation becomes better. We explain this procedure in the Appendix A.

In the Figure 17a we present as examples, the linearized data for the inter arrivals from the

skype-pcap, and in the Figure 17b the cost convergence. Appendix D presents a complete set of

figures.

Applying the inverse equations of the linear coefficients (α̂ = â and β̂ = e−(b̂/â) 6,

we can estimate the Weibull distribution parameters. We can summarize this procedure, in these

steps:

1. Linearize the stochastic CDF function F(t).

2. Apply the linearized y = y(F(t)) and x = x(t) on the empirical CDF and times datasets,

respectively.

3. Use Gradient Descendant algorithm to find linear coefficients a and b.

4. Apply the inverse equation of the linear coefficients, to determine the stochastic function

parameters.

6 We use the hat symbol (̂) for estimated parameters

Chapter 4. Modeling and Algorithms 61

4.4.3.4 Maximum Likelihood

The maximum likelihood estimation, is a method for estimation of The maximum

likelihood estimation, is a method for estimation of The maximum likelihood estimation, is a

method for estimation of parameters, winch maximizes the likelihood function. We explain in

details this subject in Appendix A. Using this method for the Pareto distribution; it is possible

to derive the following equations for its parameters:

x̂m = min
i=0,...,m

{xi} (4.8)

α̂ =
n

∑
m
i=0(ln(xi)− ln(x̂m))

(4.9)

where m is the sample(dataset) size.

4.4.3.5 AIC and BIC

Suppose that we have an statistical model M of some dataset x = {x1, ...,xn}, with n

independent and identically distributed observations of a random variable X . This model can be

expressed by a PDF f (x|θ), where θ a vector of parameter of the PDF, θ ∈R
k (k is the number

of parameters). The likelihood function of this model M is given by:

L(θ |x) = f (x1|θ) · ... · f (xn|θ) =
n

∏
i=1

f (xi|θ) (4.10)

Now, suppose we are trying to estimate the best statistical model, from a set

M1, ...,Mn, each one whit an estimated vector of parameters θ̂1, ..., θ̂n. AIC and BIC are defined

by:

AIC = 2k− ln(L(θ̂ |x)) (4.11)

BIC = k ln(n)− ln(L(θ̂ |x)) (4.12)

In both cases, the preferred model Mi, is the one with the smaller value of AICi or

BICi.

4.4.4 Cross-validation method: Theoretical Foundation of the Cost Function

To test if AIC and BIC do perform well, we had to answer two questions:

Chapter 4. Modeling and Algorithms 62

#1 How do we evaluate if stochastic models and network traffic are playing well according

to the expected?

#2 What reliable and trustable methods exist in the literature could we use to compare with

AIC and BIC?

To answer question #1, the first thing is finding how well do a model can explain a

given dataset. To answer this question we find two widely adopted alternatives:

• r-square: applied just for linear regression, and measures how well a linearization can

explain the data

• Pearson correlation coefficient: can measures how well two random variables relate to

each other.

Therefore, the metric that best satisfies our needs is the Pearson correlation coeffi-

cient. The two random variables in question are the cross-validation dataset, and random values

generated by the stochastic model. We compared it repeatedly (30 times) to obtain a small

enough confidence interval. Its value goes from -1 to +1. +1 means a perfect direct linear cor-

relation. "-1" indicates a perfect inverse linear correlation."0" means no linear correlation. So,

as close the result reaches "1", more similar are the inter-packet times to the original values. To

estimate it, we use the Octave’s function corr().

After addressing the question on the quality of data generated by the model, we

need to evaluate the quality for actual, real network traffic, following the guidelines presented

on Chapter 2, where we had defined four metric classes:

1. Packet-level metrics

2. Flow level metrics

3. Scaling characteristics

4. QoS/QoE related metrics

Since we do not distinguish the traffic between flows, neither evaluate QoS/QoE

metrics, we could not directly extract metrics from these classes. Considering packet sizes in

the first category is out of scope for our work and has been already studied in the literature.

On the metric class (1), the authors mention that the most common metric widely

adopted is throughput. We can calculate the throughput on packets per second or byte rate. Both

Chapter 4. Modeling and Algorithms 63

measures can be estimated using the mean inter-packet time. The mean packet rate per second

can be estimated by:

packet_throughput = 1/(mean_inter_packettime) (4.13)

So knowing the average packet size, we can estimate the byte by:

byte_throughput = (average_packet_size)/(mean_inter_packet_time) (4.14)

Therefore a good approximation on the average inter-packet time means a reason-

able estimate on the traffic throughout as well. Another metric cited by the authors in the scope

is the analysis of inter-packet size distributions. Researchers typically make distribution ana-

lyzes via graphical interpretation. Seeing its importance, we show as an example one of our

results on that matter, now on Figure 18. This Figure shows the comparison of four CDF func-

tions estimations for the skype-pcap, with the cross-validation data. Works such as [Botta et al.

2012] [Varet 2014] [Botta et al. 2010] [Sommers e Barford 2004] [Emmerich et al. 2015] [Field

et al. 2004] did the same task, for their own purposes using the PDF or CDF distributions. We

opted to present the CDF plot because we found it easier for discussion. However, since the goal

of our work is to compare AIC and BIC with other possible rankings inspired in the literature,

we had to abstract these plots in a single metric that represents the fitting quality. To this end,

we use the (already mentioned) Pearson correlation coefficient.

Finally, there is (3) Scaling characteristics, a well-known aspect of traffic modeling.

From the seminal work of Leland et al. [Leland et al. 1994], we know that the ethernet traffic

has a self-similar and fractal-like behavior. Some of the most important are the estimation of

the Hurst exponent (used on the last mentioned paper) [Leland et al. 1994] [Cevizci et al. 2006]

[Abry e Veitch 1998], Wavelet multiresolution analysis [Cevizci et al. 2006] [Abry e Veitch

1998] [Vishwanath e Vahdat 2009], power-law and power spectrum analysis, as suggested by

[Field et al. 2004]. However, to the best of our knowledge, there is no other method widespread

as Hurst exponent and Wavelet analysis. The problem of wavelet for our purposes is that its

interpretation is inherently graphical, and can be used to identify periodicities, white-noise,

and self-similar characteristics on a long-range analysis, depending on the graphical behavior.

However, for automatic model ranking, this approach is not practical.

On the other hand, the Hurst exponent ideal for this task, since it is a single value,

and is a representation of the fractal dimension of the dataset. Therefore, we choose to rank the

scaling characteristics of our models, based on how close they can get from the estimation of

the Hurst exponent of the cross-validation. We repeated the estimation for both cross-validation

and synthetic dataset 30 times until we got a fair and small error margin. We did not consider in

our analysis of other stochastic metrics, such as the standard deviation of the dataset. Although

Chapter 4. Modeling and Algorithms 64

the standard deviation is useful on the understanding of the nature of the traffic, we judge that

it be redundant with the Hurst exponent estimation, since it is already a measure of the data

variability. To determine this value, we use the function hurst() from Octave, which uses the

rescaled range method.

Therefore, we got three different rankings based on the literature, each of them giv-

ing their estimation of what model performs better. To do not prioritize any of these metrics, and

provide a ponderated best result we created the so-called cost function J, which is an aggregator

of results. Being Cr the vector of correlations ordered from higher to the smaller, let Me and Hr

defined by the absolute difference between average and hurt exponent of the estimated values

and the original data-set, both ordered from the small to the high values. Letting φ(V,M) be an

operator which gives the position of a model M in a vector V , we define the cost function J as:

JM(M) = φ(Cr,M)+φ(Me,M)+φ(Hr,M) (4.15)

The smaller is the cost JM; the best is the model. For example, suppose a model m1

that has the best performance on the average inter-packet time estimation, but delivers smaller

performance on data correlation and the Hurst exponent. That means, this model was able to

overfit the mean inter-packet time representation but does a poor data representation on all the

other cases. Since we are comparing seven models, this model can deliver the following cost

estimation (counting starts from position 0):

JM(M) = φ(Cr,m1)+φ(Me,m1)+φ(Hr,m1) = 6+0+6 = 12 (4.16)

On the other hand, suppose a model m2 that performs as second best on all the tests.

This one will have:

JM(M) = φ(Cr,m2)+φ(Me,m2)+φ(Hr,m2) = 1+1+1 = 3 (4.17)

Although model m1, if used for traffic generation would perform well on the

throughput representation, it is not fair that it goes ahead of the second model m2, which per-

formed pretty well on all the metrics. Therefore, we can safely say that m2 a better representation

of inter-packet times, according to metrics typically adopted in the literature of network traffic

and stochastic analysis.

4.5 Results

Here in this chapter we only discuss the approximation and QQplots achieved ob-

tained by the pcap skype-pcap. All the other comments will be referent to the general results.

C
h

a
p

ter
4

.
M

o
d

elin
g

a
n

d
A

lg
o

rith
m

s
65

Table 8 – Experimental results, including the estimated parameters and the BIC and AIC values of the four pcap traces.

Trace
Function AIC Parameters AIC BIC Parameters

skype-pcap lan-firewall-pcap
Cauchy 6.94E +03 6.95E +03 γ : 1.71E −04 x0 : 1.88E −01 −2.29E +05 −2.29E +05 γ : 1.93E −02 x0 : −4.97E −02
Exponential(LR) −4.70E +01 −4.28E +01 λ : 1.79E +00 −2.22E +06 −2.22E +06 λ : 4.05E −01
Exponential(Me) −2.16E +02 −2.12E +02 λ : 3.45E +00 3.63E +05 3.63E +05 λ : 1.13E +02
Normal 1.21E +03 1.22E +03 µ : 2.90E −01 σ : 6.95E −01 −1.48E +06 −1.48E +06 µ : 8.85E −03 σ : 3.49E −02
Pareto(LR) 3.38E +03 3.39E +03 α : 4.28E −01 xm : 5.00E −08 In f 1 In f 1 α : 2.51E −01 xm : 5.00E −08
Pareto(MLH) 1.88E +02 1.97E +02 α : 7.48E −02 xm : 5.00E −08 −1.80E +06 −1.80E +06 α : 1.15E −01 xm : 5.00E −08
Weibull −1.15E +03 −1.14E +03 β : 9.68E −02 −1.97E +06 −1.97E +06 α : 3.46E −01 β : 1.79E −03

lan-gateway-pcap wan-pcap
Cauchy 3.65E +06 3.65E +06 γ : 1.95 x0 : −4.45E +03 2.99E +07 2.99E +07 γ : 8.17E +02 x0 : −4.45E +03
Exponential(LR) 3.67E +06 3.67E +06 λ : 9.75E −03 2.84E +07 2.84E +07 λ : 2.20E −05
Exponential(Me) −5.44E +06 −5.44E +06 λ : 2.64E +03 −3.29E +07 −3.29E +07 λ : 6.58E +05
Normal −4.67E +06 −4.67E +06 µ : 3.79E −04 σ : 1.00E −06 −3.19E +07 −3.19E +07 µ : 2.00E −06 σ : 1.00E −06
Pareto(LR) −5.13E +06 −5.13E +06 α : 1.49E −01 xm : 5.00E −08 4.51E +07 4.51E +07 α : 4.00E −142 xm : 5.00E −08
Pareto(MLH) −5.13E +06 −5.13E +06 α : 1.36E −01 xm : 5.00E −08 −3.13E +07 −3.13E +07 α : 3.39E −01 xm : 5.00E −08
Weibull −5.50E +06 −5.50E +06 α : 2.81E −01 β : 1.00E −06 −2.73E +07 −2.73E +07 α : 7.64E −02 β : 1.00E −06
1 The computation of the likelihood function has exceeded the computational precision used, so it was the highest AIC and BIC for this trace.
2 The linear regression did not converge to a valid value, so we used a small value instead to perform the computations.

Chapter 4. Modeling and Algorithms 71

skype lan-gateway lan-firewall wan
Pcap Files

2

4

6
AI
C/
BI
C
po
sit
io
n

AIC/BIC position
Cauchy
Exponential(LR)
Exponential(Me)
Normal
Pareto(LR)
Pareto(MLH)
Weibull

Figure 25 – Comparision of the quality order of each model given by AIC and BIC

skype lan-gateway lan-firewall wan
Pcap Files

5

10

15

Co
st

 F
un

ct
io

n
J

Cost Function Sumary
Cauchy
Exponential(LR)
Exponential(Me)
Normal
Pareto(LR)
Pareto(MLH)
Weibull

Figure 26 – JM for each one of the datasets used in this validation process.

The other fitting and QQ plots are provided on Appendix D as a reference. We divided our

analysis into 5 steps:

1. CDF plots

2. QQplots

3. AIC and BIC

4. Correlation, Hurst Exponent, Mean, and Standard Deviation

5. AIC and BIC vs. JM

CDF plots

Figure 18 shows the CDF plots for skype-pcap. They are on log-scale, which pro-

vide a better visualization for small time scales.

Chapter 4. Modeling and Algorithms 73

ure 20 show Weibull having the best Correlation and Hurst exponent, and the third best

mean; while Exponential(Me) have had the best mean and the second best Correlation

and Hurst exponent.

• The Cauchy process have imposed an almost constant traffic, with the average inter-

packet time close to the mean. Figure 20 confirms this observation since the process

standard deviation is small, and the mean inter-packet time is close to the original (the

second best);

• Exponential processes did not represented well small and larger values, compared to

heavy-tailed processes, but were good to describe values closer to the average. On the

other hand, a self-similar processes, such as Weibull and Pareto, have had a higher disper-

sion. The random-generated values were more wide-spared over the time – what did not

necessarily have implied on quality, as we are going to see. For example, Pareto(MLH)

tended to over-estimate the amount of long values of inter-packet times, having a slower

convergence of the CDF to one compared to the other processes – about 20% of the values

are larger than 10 seconds. Cauchy for most of the case as a good process to represent the

mean inter-packet times, but did no performed so well on other metrics (Figures 23, 22,

21, and 20)

• For the normal process, all values smaller than zero were zeroed, what have caused a

vertical "off-set" on its CDF distribution.

QQplots

On the QQplots (Figure 19) we have observed that the original data had a much

more influential heavy-tail effect when compared to the randomly generated on Cauchy, Ex-

ponential(Me), Pareto(LR), and Pareto(MLH) (Appendix A). We can observe the The original

data(samples) had a much influential heavy-tail effect compared to the estimated data. We ver-

ified this by the almost horizontal line made of blue dot-marks. On the other hand, Weibull

process have had a much similar QQplot compared to the samples. Also we can identify a right-

skew for Exponential(LR), Exponential(Me) and Pareto(MLH), and a left-skew for Cauchy,

Pareto(LR) and Weibull. On the other hand, the Normal distribution have presented a bi-modal

behavior – The first mode is on zero (since we zeroed all values smaller than zero), and the

second, is close to the the average.

AIC and BIC

The calculated values for AIC, BIC, and processes parameters for all the traces are

in Table 8. We have verified in all cases that the difference between BIC and AIC for a given

process was always smaller compared to the difference between the values of a same criteria

but among different processes to represent the same traffic. In another words, changing the

Chapter 4. Modeling and Algorithms 74

criteria matter less than changing the process distribution. In our study, AIC and BIC always

have pointed to the same model ordering (Figure 25).

To compare these values of the information criteria, we calculated on the Table 9

the relative difference between AIC and BIC7. The table indicate that the AIC and BIC con-

verged to a common value as the dataset size increasead8. This result have indicated that, if the

dataset is large enough, AIC and BIC will point to the same result. As Table 9 shows, 9.54%

for Exponential(LR) was the larger difference between the information criteria. For the other

pcaps, with a greater dataset, the differences were always small than 0.001%. But, even the

lan-firewall-pcap being the largest one, the relative difference between its AIC and BIC is small

than the ones form wan-pcap and lan-gateway-pcap. However, we have that information criteria

depends on the likelihood value, and this on the individual probability of each value. We note

that the standard deviation for packet times in lan-firewall-pcap is considerably larger 22. This

may be one of the possible causes for this observed behavior.

Correlation, Hurst Exponent, Mean, and Standard Deviation

In Figures 20, 21, and 23, and 22 we show the results of properties calculated

for each of the simulations of the stochastic processes: Correlation, Exponent of Hurst, Mean

and Standard deviation. Each figure represents a different pcap file. The red horizontal line rep-

resents the value of the original traffic. Analyzing the quality of AIC and BIC on skype-pcap,

based on the figure results we see that concerning Correlation and Self-similarity it picked the

right model: Weibull. Also regarding the average packet rate and dispersion, it is still one of

the best choices. On regarding to the Mean, Exponential(Me) and Cauchy had the best perfor-

mances. Regarding to the Standard Deviation, Exponential(Me) and Exponential(LR) had the

best performance. Not by chance, Exponential(Me) AIC and BIC presented as the second best

option. Comparing the results of the figures with the order suggested by AIC to BIC (Figure 25),

we noticed that the best ranked models showed a good performance in the metrics in general.

We show the cost function JM, able to summarize all the primary metrics in a single number, in

Figure 24. All these results are abstracted by the cost function JM.

AIC and BIC vs. JM

Table 8 summarizes the estimates obtained for AIC, BIC, and the stochastic pro-

cess estimated parameters for all pcap traces. Each model order is graphically presented in

Figure 25. For all pcap experiments, we verify that the difference between BIC and AIC for a

given function is always smaller than its value among different distributions. As shown in the

Table 8, AIC and BIC criteria always pointed to the same model ordering. Table 9 presents the

7 To calculate the relative difference r% shown on Table 9 we used this formula:

r% =
|V1 −V2|
(V1+V2)

2

·100 (4.18)

8 from the small to the larger dataset we have skype-pcap, lan-gateway-pcap, wan-pcap, and lan-firewall-pcap

Chapter 4. Modeling and Algorithms 75

percentage difference between the obtained values. We verify that their values tend to converge

when the dataset increases.

Figure 24 illustrates the cost function values for all the models on each pcap file.

For example, for skype-pcap, BIC and AIC points that Weibull and Exponential(Me) are the

best representation for the traffic. The cost function used for cross-validation points both as

best options, along with Exponential(LR). To simplify the visualization and comparison of the

differences between the rankings given by both methodologies, we created the plot 28. The

Figure 28 presents a chart with the relative differences from the order of each model. Taking as

a reference the position of each model given by J, we sorted them from the better to the worst (0

to 6, on the x-axis), and measured the position distance with the ones given by the information

criteria. Since the worst case for this value is 6 (opposite correspondence), we draw a line on the

average: the expected value in the case no positive or negative correspondence existed between

both information criteria and J. Using the φ operator, as defined before, we can calculate the

ranking delta, as explained, for the i-th model by:

δ (mi) = φ(Jv,mi)−φ(IC,mi) (4.19)

Where Jv and IC are the ordered pairs vectors on models and cost functions/infor-

mation criteria, from the best to the worst, respectively. We can observe that for mos to the use

cases, the information criteria and the cost function had chosen models in a similar order. A

hypothesis ranked well by one, tend to be ranked as good on the other. For the 28 possible study

cases, 19 (68%) had the same, or one-position difference on the ranking. Also, can point that

AIC/BIC tended to prioritize most of the heavy-tailed processes, such as Weibull and Pareto

(except by Cauchy). It is a useful feature when the scaling and long-range characteristics of the

traffic have to be prioritized by the selected model.

Finally, we point out the AIC and BIC presented a bias in favor of Pareto(MLH).

Even though it was never ranked as the best model, it was always better positioned by AIC and

BIC than by J. We explain this result by the fact that AIC and BIC calculation uses the model

likelihood, and the Pareto(MLH) maximizes it. This effect is clear on the lan-firewall-pcap.

On the Figure 27 we plot the cross-validation dataset, the best fitting pointed by both methods

(Weibull), and the second-best indicated by J (Pareto(LR)) and by AIC/BIC(Pareto(MLH)).

Even though Pareto(MLH) has a good performance representing small values, about 10% of the

inter-packet times are higher than 10 seconds, a prohibitive high value. It makes the Pareto(LR)

overhaul performance better.

Chapter 4. Modeling and Algorithms 76

4.6 Conclusions

In this section, we explained on details methods mentioned in Chapter 3. After,

revisiting some classical works on modeling inter-packet times and packet trains, we resent

the methods used to estimate packet trains periods (Algorithm 1) and make the application

classification (Table 6). We then presented the use of information criteria (AIC and BIC) as tools

for automatic selection of stochastic processes for inter-packet times. Since information criteria

have not been tested for our study-case yet, were never tested for our study case, we developed

an independent cross-validation method, based on traditional metrics for traffic validation. Since

both procedures have converged to similar results, we conclude that AIC and BIC are reliable

tools. However, we have to pay attention to processes parameterized the maximum likelihood

method, since they tend to be prioritized, even performing poorly. We abstracted this method

for automatically select stochastic processes in Algorithm 2.

We introduced and evaluated a method based on BIC and AIC for analytic selec-

tion criteria of the best stochastic process to model network traffic. We use a cross-validation

methodology based on random data generation following the selected models and cost function

measurements. We observe that both AIC or BIC and the cost function were able to pick the

first models in the same order, corroborating to our hypothesis of Akaike and Bayesian infor-

mation criteria as reliable model selectors for network inter-packet times. We can conclude that

BIC and AIC are suitable alternatives to derive realistic network traffic models for synthetic

traffic generation. The only cave we point is on the use of the Maximum Likelihood method,

that can over-prioritized some models over others with better performance. We summarize the

implementation used on SIMITAR on Algorithm 2.

Algorithm 2 stochasticModelFitting

1: function STOCHASTICMODELFITTING(interArrivalData,criterion)
2: m = interArrivalData.size

3: interArrivalData = interArrivalData+MIN_T IME

4: if m < MINIMUM_AMOUNT _OF_PACKET S then
5: model_list = {constant}
6: else
7: model_list = {weibull, pareto_lr, pareto_mlh,exponential_me,exponential_lr,normal,
8: cauchy,constant}
9: end if

10: for model in model_list do
11: model. f itting_model(interArrivalData)
12: end for
13: model_list.sort(criterion)
14: return model_list

15: end function

77

5 Proof of Concept Evaluation

5.1 Testbed

As the experimental platform for validation we use Mininet-based emulated sce-

narios. For reproducibility purposes, Table 10 presents all relevant experimental details. All

the required scripts are available on the SIMITAR code repository [Paschoalon 2019]. We use

SIMITAR v0.4.2 (Eulemur rubriventer)1, as tagged at the GitHub repository. We explore a tree

topology (Figure 29), and a one-hop connection (Fig. 30). Both scenarios as SDN networks with

an OpenDayLight (Beryllium) controller. We use two pcap files. The first is a Skype capture

(skype-pcap), and the second (lgw10s-pcap) corresponds to the first ten seconds of a gateway

capture2. Host host h1 (IPv4 address 10.0.0.1) has generated the traffic, and was captured by

TCPDump3 on pcap format.

5.2 Methodology

To compare the degree of realism of the generated traffic, we use the flows’ cumu-

lative distribution function (CDF) [Sommers e Barford 2004], and the Wavelet multi-resolution

analysis [Vishwanath e Vahdat 2009]. On both analysis, the closer the plots are, the more re-

alistic is the traffic generated by SIMITAR. The flow’s cumulative distribution measures the

ingress of new flows over time, and it is a measure similarity and evolution of the traffic at the

flow-level. On the other hand, the wavelet multi-resolution analysis can extract traffic scaling

characteristics and is a measure of similarity at the packet-level. If the curve decreases, this

indicates a periodicity on that time scale exists. If the curve remains approximately constant, it

indicates similarity to white-noise. Finally, if the traffic has self-similar characteristics around

a particular time scale, its curve increases linearly. Table 12 presents a compendium of metrics

extracted from the traffic, including the Hurst exponent, which is a metric of the traffic fractal

level. Self-similar processes, such as the network traffic, have its value between 0.5 and 1.0

(0.5 < H < 1.0) [Leland et al. 1994].

1 We label the tags of SIMITAR control version on GitHub as lemurs species names
(https://en.wikipedia.org/wiki/List_of_lemur_species)

2 skype-pcap: available at <https://wiki.wireshark.org/SampleCaptures>, named SkypeIRC.cap; lgw10s-pcap
avaiable at <http://tcpreplay.appneta.com/wiki/captures.html> named bigFlows.pcap

3 TCPDump is a tool for monitoring and capturing network packets [TCPDUMP/LIBPCAP public repository
2019].

Chapter 5. Proof of Concept Evaluation 78

Table 10 – Experiments specification table

Processor Intel(R) Core(TM) i7-4770, 8 cores, CPU @ 3.40GHz
RAM 15.5 GB
HD 1000 GB
Linux 4.8.0-59-generic
Ubuntu Ubuntu 16.10 (yakkety)
SIMITAR v0.4.2 (Eulemur rubriventer)
Mininet 2.3.0d1
Iperf iperf version 2.0.9 (1 June 2016) pthreads
Libtins 3.4-2
OpenDayLight 0.4.0-Beryllium
Octave 4.0.3
Pyshark 0.3.6.2
Wireshark 2.2.6+g32dac6a-2ubuntu0.16.10
Tcudump 4.9.0
libpcap 1.7.4

Figure 29 – Tree SDN topology emulated by mininet, and controlled by OpenDayLight Beryl-
lium

5.3 Results

Figures 33, 34 and Table 12 show the obtained results when comparing the original

and the synthetic traffic generated by SIMITAR. We also illustrate the bandwidth traffic for one

Chapter 5. Proof of Concept Evaluation 79

Figure 30 – Single hop SDN topology emulated by mininet, and controlled by OpenDayLight
Beryllium

Table 11 – Performed validations

Metric Type Validations

Packet Based
Metrics

Data bit rate (kbps), Average packet
rate (packets/s), Average packet size

(bytes), Number of packets, Number of
packets, Bandwidth over time

Flow Based
Metrics

Number of flows, Flows per second,
Flows CDF distributions

Fractal and Scaling
Characteristics

Hurst Exponent, Wavelet
Multiresolution Analisis

of the use cases in Figure 31. As we can see the generated traffics are not identical regarding

bandwidth. However, both present similar fractal-like shape. The Hurst exponent of inter-packet

times in every case has an error smaller than 10% compared to the original in every case, i.e.,

the fractal-level of each synthetic traffic is indeed similar to the original trace.

The plot of flows per second seems much more accurate (Fig. 32), since most of the

peaks match. Indeed, no visual lag between the plots. Even though the generated traffic is not

identical to the original, the cumulative flow distribution obtained for every study-case is almost

identical on every plot (Fig. 33). The small differences on the curves result from threads and pro-

cess concurrence for resources, in addition to noise from the sleep/wake processes on the thread

signals. Since the operating system made the packet capture and timing, the packet capture

buffer queue may have contributed as well. This result was our most significant achievement

in our implementation. This result shows that our method of flow scheduling and independent

traffic generation was effective and efficient in replicating the original traffic at the flow-level.

However, the actual number of flows was more significant when SIMITAR used Iperf as the

traffic generator API and slightly smaller when using libtins. This discrepancy can be explained

because Iperf establishes additional connections to control the signaling and traffic statistics for

every connection. On the other hand, with libtins, the number of flows is small, since a flow

generation is aborted if the NetworkFlow flow class fails to create a new traffic flow.

The results from the Wavelet multi-resolution analysis of inter-packet times vary in

Chapter 5. Proof of Concept Evaluation 80

each case. The time resolution chosen was ten milliseconds, and it is represented in log 2 scale.

The equation can calculate the time of each time-scale j:

t =
2 j

100
[s] (5.1)

In the first case (Fig. 33a), SIMITAR reproduced Skype traffic, using Iperf in a

single-hop scenario. On small time scales, both curves increased linearly, which indicates a

fractal shape. However, at this point, they exhibit different slopes with the synthetic traces be-

having closer to a white-noise shape. After the time scales 5 and 6 (300-600 milliseconds) scale,

the error between the curves becomes almost negligible. We also observe a periodicity pattern

at the time-scale of 9 seconds. Vishwanath and Vahdat [Vishwanath e Vahdat 2009] measured

the same periodicity pattern; which appears to be an intrinsic characteristic of TCP traffic. We

observe some periodicity at 11 and 13 time-scales (20 and 80 seconds).

In the second case (Fig. 33b), on a tree topology on small time scales, we identify

behavior closer to white-noise on small scales, and similar results, but with more substantial

energy levels on greater time scales. The diversity introduced by the topology and the concurrent

signaling traffic caused by the other hosts and switches does explain the observed behavior since

node signaling tends to be more randomized than user-generated traffic. Indeed, as we can see

in Table 10, there are two hundred more packets captured on the client interface in the tree

topology compared to the one-hop scenario.

In the last two plots (Figures 33c and 33d), where we use libtins as the packet

crafter, the energy level is higher, and the curves are less correlated. SIMITAR, in the current

implementation, is not modeling inter-packet with libtins and sends packets as fast as possi-

ble, which explains this discrepancy. However, in the last scenario, due to the higher average

throughput, the observed performance was better.

Table 12 – Sumary of results comparing the original traces (italic) and te traffic generated by
SIMITAR, with the description of the scenario.

skype-pcap

skype,
one-hop,

iperf

skype,
tree,
iperf

skype,
one-hop,

libtins
lgw10s-pcap

lgw10s,
one-hop,

libtins
Hurst Exponent 0.601 0.618 0.598 0.691 0.723 0.738
Data bit rate (kbps) 7 19 19 12 7252 6790
Average packet rate (packets/s) 3 4 5 6 2483 2440
Average packet size (bytes) 260,89 549,05 481,14 224,68 365,00 347,85
Number of packets 1071 1428 1604 2127 24 k 24 k
Number of flows 167 350 325 162 3350 3264

Chapter 5. Proof of Concept Evaluation 83

5.4 Conclusions

We present SIMITAR as a tool and methodology to attend the evolving needs of

rich and realistic network traffic experiments working at both flow- and packet-level. At the

flow-level, our methodology already achieves high fidelity results. The cumulative distribution

of flows is almost identical in each case. From the perspective of benchmarking of a middle-

boxes or SDN switches, this is a valuable result, since their performance, especially in SW

implementations, largely depend on the number and characteristics of the stimuli flows. How-

ever, because of packets exchanged by background signaling connections, the traffic generated

by Iperf, even following the same cumulative flow distribution, ended up creating more streams

then expected.

At the packet level, the current results with Iperf replicate with high accuracy the

scaling characteristics of the first traffic, and the number of generated packets are not far than the

expected. Despite all identified optimization, the results are more than satisfactory and prove the

potential of the proposed methodology. At the flow-level, our results are at least as good as those

achieved by best-of-breed related work like Harpoon and Swing. On the scaling characteristics,

using lightweight traces, the results have been of comparable in quality.

84

6 Future Work

Table 13 lists a set of ideas for future work. The sections A to D comprehend topics

on the evolution of SIMITAR. Section E mentions new ideas of research that can contribute to

SIMITAR evolution. Also, some items can be a starting point for new tools.

Table 13 – Overview of future work topics

A Performance
1 Modeling Optimizations
2 TinyFlows and flow merging
3 Smarter Flow Scheduler and thread management
4 DPDK KNI Interfaces
5 Multi-thread C++ Sniffer

B Tool Support
1 Inter-packet times on TinsFlow
2 D-ITG Flow Generator: DitgFlow
3 DPDK Flow Generator: DpdkFlow
4 Ostinato Flow Generator: OstinatoFlow
5 ZigBee protocol Support

C Calibration
1 min_time
2 min_on_time
3 session_cut_time

D New Components
1 Traffic Measurer
2 Pcap files crafter
3 Python/Lua Flow Generator

E New Research Topics
1 Automated Selection of Inter-packet times models 2.0
2 How how to craft malicious flows?
3 Markovian-based traffic models
4 Envelope-process based traffic models
5 Relationship between Hurst and Hölder exponent, and stochastic processes.
6 Hurst-exponent feedbakc controll system for ON/OFF times
7 Traffic generation based on Generative Adversarial Networks (GANs)
8 Realistic WAN, WiFi, and IoT traffic
9 SIMITAR vs Harpoon
10 How well traffic generators simulate reproduce stochastic processes?
11 Traffic Generator Tools Survey

Chapter 6. Future Work 85

6.1 Performance

6.1.1 Modeling optimizations

[A.1] The primary issue of SIMITAR now is optimizing data processing for creating

the Compact Trace Descriptor. The performance becomes an issue when processing large pcap

files with more dozens of thousands of flows. The time expended for processing traces, in this

case, is exceeding tens of hours. In the current implementation, the linear regression execution

is mono-thread, and the stop criterion is just the number of iterations. Parallel processing, and

creating stop criteria based on convergence in addition to the number of iterations will improve

the performance, along with some code optimizations. Make the XML less verbose will help as

well.

6.1.2 TinyFlows and flow merging

[A.2] Crating an option for merging flows is a possibility to improve the perfor-

mance of traffic with several thousands of flows and Gigabits of bandwidth, such as from WAN

captures. A merge criterion, for example, is to consider just network headers on flow’s classifica-

tion. Also, the usage of simpler models for flows with a small number of packets (a "TinyFlow"),

would improve the processing speed.

6.1.3 Smarter Flow scheduler and thread management

[A.3] Currently, SIMITAR instantiates all the flow threads once the traffic gener-

ations start. A smarter traffic generation where SIMITAR instantiates each thread when the

traffic, and join when it is inactive should reduce the overhead for traces with a large number of

flows.

6.1.4 DPDK KNI Interfaces

[A.4] One possibility to improve the traffic generation performance issue DPDK

Kernel NIC Interface (KNI interfaces) 2. DPDK KNI interfaces allow applications from the

user’s space to interact with DPDK ports. In this way, we may achieve a faster packet process-

ing.

Chapter 6. Future Work 87

[B.2-4] Expand SIMITAR to other traffic generator tools (Figure 36). D-ITG offers

many stochastic functions for customization of inter-packet times, Ostinato provides a rich set

of headers and protocols, and DPDK a high performance on packet generation. Each tool can

offer a different result on traffic generation, each with their benefits.

6.2.3 ZigBee protocol Support

[B.5] Finally, to apply SIMITAR on IoT scenarios, we will have to provide support

for new protocols, such as ZigBee [Ramya et al. 2011].

6.3 Calibration

6.3.1 min_time

[C.1] Calibrate the constant DataProcessor::min_time: smallest time consid-

ered for inter-packet times. We use this value to avoid inter-packet times equals to zero due to

the sniffer resolution. Today, this value is 5e−8.

6.3.2 min_on_time

[C.2] Calibrate the constant DataProcessor::m_min_on_time: this value con-

trols the small ON time that a file can have. It can change the generated traffic precision. Cur-

rently, this value is 0.1s.

6.3.3 session_cut_time

[C.3] Calibrate the constant DataProcessor::m_session_cut_time. calcOnOff

uses this value to defines whatever a file transference still active or has ended. This constant

affects performance on traffic realism.

6.4 New Components

6.4.1 Traffic Measurer

[D.1] Develop a component able to extract useful QoS information from the gener-

ated traffic is essential on the applicability and utility of our tool (Figure 37). This can be done

by:

Chapter 6. Future Work 89

6.4.3 Python/Lua Flow Generator

[D.3] Currently, SIMITAR only enables the programming of flow traffic generation

in C++. Adding Python and Lua support for the Flow Generator component, we can allow ex-

pansion for Python/Lua traffic generation APIs (such as Ostinato and MoonGen APIs), without

creating C++ wrappers.

6.5 New Research Topics

6.5.1 Automated Selection of Inter-packet times models 2.0

[E.1] Expand our work made on the validation of information criteria on the auto-

mated selection of stochastic models.

• A deeper analysis of the impact on the maximum likelihood method in comparison to the

others;

• An analysis of the effectiveness of each parameterization method, and the best perfor-

mance of each metric of quality measurement: correlation, mean inter-packet time and

Hurst exponent;

• Use of new stochastic methods functions, such as Log-Normal, Gamma, Poison, Bino-

mial, Beta, and Chi-squared;

• Use of Markovian-chain and Envelope processes;

• Use other information criteria, such as AICc, MDL, nMDL [Tune et al. 2016] and DIC

[Spiegelhalter et al. 2014].

6.5.2 How how to craft malicious flows?

[E.2] Research features used on by intrusion detection and intrusion prediction sys-

tems, and develop a method to mimic malicious flows, creating a "MaliciousFlow" model. At

the same time, improve and evolve the current flow modeling, to ensure regular flows are not

labeled as malicious flows by the same systems. In that way, SIMITAR will be able to craft

malicious traces, an important achievement in network security research.

6.5.3 Envelope and Markovian-based traffic models

[E.3-4] Evolve SIMITAR traffic model, and try the application of Markovian and

Envelope processes on the modeling of inter-packet times and ON/OFF times.

Chapter 6. Future Work 91

Figure 40 – Example of GANs application. GANs are commonly used for image synthesis.
Source: [Wu et al. 2017].

(a) skype-pcap (b) gateway-pcap

(c) firewall-pcap (d) wan-pcap

Figure 41 – Color-map of inter-packet times from pcaps used on Chapter 4.

6.5.7 Realistic WAN, Wifi and IoT traffic

[E.8] Expand the support for protocols and API of traffic generation to create syn-

thetic traffic in different environments:

• Using DPDK, and improving the processing performance can be able to recreate WAN

synthetic traffic.

• Support for new protocols, such as IEEE 802.11 (Wifi) and ZigBee, to create synthetic

Wifi and IoT traffic.

Chapter 6. Future Work 92

6.5.8 SIMITAR vs Harpoon

[E.9] A "trial by fire", after improving the tools with these new features, compare

the performance on realism and throughput of SIMITAR and Harpoon.

6.5.9 How well traffic generators simulate reproduce stochastic processes?

[E.10] A parallel research topic. Evaluate how close traffic generators that use the

stochastic process to model inter-packet times can reproduce the theoretically expected values.

6.5.10 Traffic Generator Tools Survey

[E.11] The idea is to consolidate the already collected knowledge on traffic gener-

ators (Chapter 2 and Appendix C), with other topics of relevance in these subjects, inspired in

the same structure used by other surveys.

93

7 Final Conclusions

In this dissertation, we discuss our proposed process of conceiving, researching,

definition and development and validation of a realistic traffic generator to fill gaps in the state

of the art, achieving results comparable to open-source projects. We followed a spiral process,

as defined in the introduction (Figure 1, Chapter 1). After defining the scope of our research,

we researched the literature and could not find any publicly available traffic generation solution,

which at the same time is:

• Auto-configurable;

• Produces Realistic Traffic;

• Enables Traffic Customization;

• Extensible.

At this point, we identified a set of requirements, we designed an architecture using

UML, and we implemented an initial prototype. Next, we continue to search for more tech-

niques and methods that could be applied to solve our tasks and improve the results. We re-

searched many topics that at the end did not fit our intentions, such as Machine Learning and

Neural Networks. However, others such as Linear regression, maximum likelihood, and infor-

mation criteria were indeed satisfactory. Many ideas were inspired by previous researches, such

as Harpoon, Swing, sourcesOnOff, and LegoTG. Again, we planned a methodology, procedure,

and validate these ideas, and codded. SIMITAR evolution continued with incremental upgrades

until we reach the process presented in the Chapter 3. Also, along with the developed soft-

ware, we have documented our findings over the literature and open-source community. The

more-relevant subjects for the understanding of our research; to mention (i) traffic generator

tools, (ii) network traffic modeling; (iii) validation of traffic generators have been documented

in Chapter 2. Although, whether necessary, concepts were introduced in other parts of the text

– especially Chapter 4. Also, we have saved the cut-content on Appendix C.

In Chapter 4, we achieve a significant contribution to our work, which shows that

the information criteria AIC and BIC are efficient analytic methods for select models for inter-

packet times. Both can infer a good model, even evaluated according to different types of met-

rics, without any simulation. Also, we show evidence that for Ethernet traffic of data, choosing

AIC and BIC make almost no difference. As far as is our knowledge, this is a complete study

on the use of AIC and BIC on inter-packet times modeling of Ethernet traffic.

Our tests performed in Chapter 4 intend to focus on packet-level, flow-level, and

scaling metrics. The results were notably good at the flow-level. SIMITAR were able to repli-

Chapter 7. Final Conclusions 94

cate the flow-cumulative distribution with high accuracy, and with libtins, the number of flows

as well. When Iperf was the traffic generator API, the number of flows was more substantial,

because it establishes additional connections for signaling. On scaling and packet metrics, the

results still have to be improved. Iperf as the traffic generator tool, still being limited, has proved

to be efficient on replication the scaling characteristics for the Skype traffic. Since it establishes

socket connections to generate the traffic, we believe that this fact makes it accurate on replica-

tion traffic from applications.

In the end, we were able to implement a functional implementation of the solution

proposed in Chapter 1.

• SIMITAR was able to create synthetic traffic, based on our models, replicating wich good

results flow-level characteristics, fractal and scaling characteristics as well;

• SIMITAR is auto-configurable, sparing user time on conceiving parameterization, valida-

tion, and implementation of a good traffic model;

• SIMITAR enables flexible traffic customization. The user may program his custom traffic,

creating a custom Compact Trace Descriptor, without having to use any Traffic Genera-

tion API;

• SIMITAR decouples the modeling and traffic generation layer completely. SIMITAR is

fully extensible, relying on the implementation of just a C++ class. Our current imple-

mentation use two very distinct packet-crafters: libtins, a C++ library designed for the

application of sniffers and traffic generators, and Iperf, a traffic generator used to band-

width measurements.

Finally, we identified a list of improvements and future works (Chapter 6), aiming

the development of the software, including, performance better processing time and packet

generation, and the realism on the traffic generated. The higher bottleneck of the project resides

on processing performance. For processing huge pcap files, it still takes a prohibitive amount

of time. The results on realism, even with much room for improvement, already have a good

quality. With the proposed future works, we believe to overcome the identified limitations.

95

Bibliography

ABRY, P.; VEITCH, D. Wavelet analysis of long-range-dependent traffic. IEEE Transactions

on Information Theory, v. 44, n. 1, p. 2–15, Jan 1998. ISSN 0018-9448.

ANTICHI, G.; PIETRO, A. D.; FICARA, D.; GIORDANO, S.; PROCISSI, G.; VITUCCI, F.
Bruno: A high performance traffic generator for network processor. In: 2008 International

Symposium on Performance Evaluation of Computer and Telecommunication Systems. [S.l.:
s.n.], 2008. p. 526–533.

Antichi, G.; Shahbaz, M.; Geng, Y.; Zilberman, N.; Covington, A.; Bruyere, M.; Mckeown,
N.; Feamster, N.; Felderman, B.; Blott, M.; Moore, A. W.; Owezarski, P. Osnt: open source
network tester. IEEE Network, v. 28, n. 5, p. 6–12, Sep. 2014. ISSN 0890-8044.

APPROPRIATE Uses For SQLite. 2019. <https://www.sqlite.org/whentouse.html>. (Accessed
on 04/17/2019).

BARFORD, P.; CROVELLA, M. Generating representative web workloads for network
and server performance evaluation. SIGMETRICS Perform. Eval. Rev., ACM, New
York, NY, USA, v. 26, n. 1, p. 151–160, jun. 1998. ISSN 0163-5999. Disponível em:
<http://doi.acm.org/10.1145/277858.277897>.

BARTLETT, G.; MIRKOVIC, J. Expressing different traffic models using the legotg
framework. In: 2015 IEEE 35th International Conference on Distributed Computing Systems

Workshops. [S.l.: s.n.], 2015. p. 56–63. ISSN 1545-0678.

BOOCH, G. The unified modeling language user guide. Upper Saddle River, NJ:
Addison-Wesley, 2005. ISBN 0321267974.

BOTTA, A.; DAINOTTI, A.; PESCAPE, A. Do you trust your software-based traffic generator?
IEEE Communications Magazine, v. 48, n. 9, p. 158–165, Sept 2010. ISSN 0163-6804.

BOTTA, A.; DAINOTTI, A.; PESCAPé, A. A tool for the generation of realistic network
workload for emerging networking scenarios. Computer Networks, v. 56, n. 15, p. 3531 –
3547, 2012. ISSN 1389-1286. Disponível em: <http://www.sciencedirect.com/science/article/
pii/S1389128612000928>.

BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. C. Time Series Analysis: Forecasting and

Control. 3. ed. Englewood Cliffs, NJ: Prentice Hall, 1994.

BURTON, R. The book of the sword : a history of daggers, sabers, and scimitars from

ancient times to the modern day. New York: Skyhorse Publishing, Inc, 2014. 130 p. ISBN
978-1626364011.

C++ Programming: Code patterns design - Wikibooks, open books for an open world. 2019.
<https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns>. (Accessed
on 04/21/2019).

CAI, Y.; LIU, Y.; GONG, W.; WOLF, T. Impact of arrival burstiness on queue length: An
infinitesimal perturbation analysis. In: Proceedings of the 48h IEEE Conference on Decision

Bibliography 96

and Control (CDC) held jointly with 2009 28th Chinese Control Conference. [S.l.: s.n.], 2009.
p. 7068–7073. ISSN 0191-2216.

CAIDA Center for Applied Internet Data Analysis. 2019. http://www.caida.org/home/. [Online;
accessed January 11th, 2017].

CASTRO, E.; KUMAR, A.; ALENCAR, M. S.; E.FONSECA, I. A packet distribution traffic
model for computer networks. In: Proceedings of the International Telecommunications

Symposium – ITS2010. [S.l.: s.n.], 2010.

CEVIZCI, I.; EROL, M.; OKTUG, S. F. Analysis of multi-player online game traffic based
on self-similarity. In: Proceedings of 5th ACM SIGCOMM Workshop on Network and System

Support for Games. New York, NY, USA: ACM, 2006. (NetGames ’06). ISBN 1-59593-589-4.
Disponível em: <http://doi.acm.org/10.1145/1230040.1230093>.

Covington, G. A.; Gibb, G.; Lockwood, J. W.; Mckeown, N. A packet generator on the
netfpga platform. In: 2009 17th IEEE Symposium on Field Programmable Custom Computing

Machines. [S.l.: s.n.], 2009. p. 235–238.

CSIKOR, L.; SZALAY, M.; SONKOLY, B.; TOKA, L. Nfpa: Network function performance
analyzer. In: Network Function Virtualization and Software Defined Network (NFV-SDN),

2015 IEEE Conference on. [S.l.: s.n.], 2015. p. 15–17.

D-ITG, Distributed Internet Traffic Generator. 2015.
http://traffic.comics.unina.it/software/ITG/. [Online; accessed May 14th, 2016].

DATE, C. J. An introduction to database systems. Boston: Pearson/Addison Wesley, 2004.
ISBN 978-0321197849.

DPDK – Data Plane Development Kit. 2019. http://dpdk.org/. [Online; accessed May 14th,
2016].

EMMERICH, P.; GALLENMüLLER, S.; RAUMER, D.; WOHLFART, F.; CARLE,
G. Moongen: A scriptable high-speed packet generator. In: Proceedings of the 2015

ACM Conference on Internet Measurement Conference. New York, NY, USA: ACM,
2015. (IMC ’15), p. 275–287. ISBN 978-1-4503-3848-6. Disponível em: <http:
//doi.acm.org/10.1145/2815675.2815692>.

FENG, W.-c.; GOEL, A.; BEZZAZ, A.; FENG, W.-c.; WALPOLE, J. Tcpivo: A high-
performance packet replay engine. In: Proceedings of the ACM SIGCOMM Workshop

on Models, Methods and Tools for Reproducible Network Research. New York, NY,
USA: ACM, 2003. (MoMeTools ’03), p. 57–64. ISBN 1-58113-748-6. Disponível em:
<http://doi.acm.org/10.1145/944773.944783>.

FIELD, A. J.; HARDER, U.; HARRISON, P. G. Measurement and modelling of self-similar
traffic in computer networks. IEE Proceedings - Communications, v. 151, n. 4, p. 355–363,
Aug 2004. ISSN 1350-2425.

FIORINI, P. M. On modeling concurrent heavy-tailed network traffic sources and its impact
upon qos. In: 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).
[S.l.: s.n.], 1999. v. 2, p. 716–720 vol.2.

Bibliography 97

GARCIA, L. M. Programming with libpcap - sniffing the network from our own
application. Hakin 9., v. 3, n. 2, p. 38–46, jan 2008. ISSN 1733-7186. Disponível em:
<http://recursos.aldabaknocking.com/libpcapHakin9LuisMartinGarcia.pdf>.

GEN_SEND, gen_recv: A Simple UDP Traffic Generater Application. 2019.
http://www.citi.umich.edu/projects/qbone/generator.html. [Online; accessed January
11th, 2017].

GENSYN - generator of synthetic Internet traffic. 2019.
http://www.item.ntnu.no/people/personalpages/fac/poulh/gensyn. [Online; accessed
May 14th, 2016].

GETTING Started with Pktgen. 2015.
http://pktgen.readthedocs.io/en/latest/getting_started.html. [Online; accessed May 14th,
2016].

Ghobadi, M.; Salmon, G.; Ganjali, Y.; Labrecque, M.; Steffan, J. G. Caliper: Precise and
responsive traffic generator. In: 2012 IEEE 20th Annual Symposium on High-Performance

Interconnects. [S.l.: s.n.], 2012. p. 25–32. ISSN 1550-4794.

GRIGORIU, M. Dynamic systems with poisson white noise. Nonlinear Dynamics, v. 36,
n. 2, p. 255–266, 2004. ISSN 1573-269X. Disponível em: <http://dx.doi.org/10.1023/B:
NODY.0000045518.13177.3c>.

HAIGHT, F. A. Handbook of the Poisson Distribution. New York: John Wiley & Son, 1967.

HAN, B.; GOPALAKRISHNAN, V.; JI, L.; LEE, S. Network function virtualization:
Challenges and opportunities for innovations. Communications Magazine, IEEE, v. 53, n. 2, p.
90–97, Feb 2015. ISSN 0163-6804.

HEEGAARD, P. Gensyn-a java based generator of synthetic internet traffic linking user
behaviour models to real network protocols. ITC Specialist Seminar on IP Traffic Measurement,

Modeling and Management, 01 2000.

HTTPERF(1) - Linux man page. 2019. https://linux.die.net/man/1/httperf. [Online; accessed
January 11th, 2017].

HUANG, H.; YU, P. S.; WANG, C. An introduction to image synthesis with generative
adversarial nets. CoRR, abs/1803.04469, 2018. Disponível em: <http://arxiv.org/abs/1803.
04469>.

HUANG, M.; WANG, X.; LI, K.; DAS, S. K. A comprehensive survey of network function
virtualization. Computer Networks, v. 133, p. 212–262, 2018.

HUANG, P.; FELDMANN, A.; WILLINGER, W.; ARCHIVES, T. P. S. U. C. A non-intrusive,
wavelet-based approach to detecting network performance problems. unknown, 2001.
Disponível em: <http://citeseer.ist.psu.edu/453711.html>.

INTRODUCTION to Mininet · mininet/mininet Wiki. 2019. <https://github.com/mininet/
mininet/wiki/Introduction-to-Mininet#what>. (Accessed on 04/21/2019).

IPERF - The network bandwidth measurement tool. 2019. https://iperf.fr/. [Online; accessed
May 14th, 2016].

Bibliography 98

JPERF. 2015. https://github.com/AgilData/jperf. [Online; accessed May 14th, 2016].

JPERF. 2019. https://sourceforge.net/projects/jperf/. [Online; accessed Apr 14th, 2019].

JU, F.; YANG, J.; LIU, H. Analysis of self-similar traffic based on the on/off model. In: 2009

International Workshop on Chaos-Fractals Theories and Applications. [S.l.: s.n.], 2009. p.
301–304.

KHAYARI, R. E. A.; RUCKER, M.; LEHMANN, A.; MUSOVIC, A. Parasyntg: A
parameterized synthetic trace generator for representation of www traffic. In: Performance

Evaluation of Computer and Telecommunication Systems, 2008. SPECTS 2008. International

Symposium on. [S.l.: s.n.], 2008. p. 317–323.

KLEBAN, S. D.; CLEARWATER, S. H. Hierarchical dynamics, interarrival times, and
performance. In: Supercomputing, 2003 ACM/IEEE Conference. [S.l.: s.n.], 2003. p. 28–28.

KOLAHI, S. S.; NARAYAN, S.; NGUYEN, D. D. T.; SUNARTO, Y. Performance monitoring
of various network traffic generators. In: Computer Modelling and Simulation (UKSim), 2011

UkSim 13th International Conference on. [S.l.: s.n.], 2011. p. 501–506.

KREUTZ, D.; RAMOS, F.; VERISSIMO, P. E.; ROTHENBERG, C. E.; AZODOLMOLKY,
S.; UHLIG, S. Software-defined networking: A comprehensive survey. Proceedings of the

IEEE, v. 103, n. 1, p. 14–76, Jan 2015. ISSN 0018-9219.

KRONEWITTER, F. D. Optimal scheduling of heavy tailed traffic via shape parameter
estimation. In: MILCOM 2006 - 2006 IEEE Military Communications conference. [S.l.: s.n.],
2006. p. 1–6. ISSN 2155-7578.

Ku, C.; Lin, Y.; Lai, Y.; Li, P.; Lin, K. C. Real traffic replay over wlan with environment
emulation. In: 2012 IEEE Wireless Communications and Networking Conference (WCNC).
[S.l.: s.n.], 2012. p. 2406–2411. ISSN 1558-2612.

KUROSE, J. Computer networking : a top-down approach. Boston: Pearson, 2017. ISBN
9780133594140.

KUSHIDA, T.; SHIBATA, Y. Empirical study of inter-arrival packet times and packet losses.
In: Proceedings 22nd International Conference on Distributed Computing Systems Workshops.
[S.l.: s.n.], 2002. p. 233–238.

KUTE – Kernel-based Traffic Engine. 2007. http://caia.swin.edu.au/genius/tools/kute/.
[Online; accessed May 14th, 2016].

LELAND, W. E.; TAQQU, M. S.; WILLINGER, W.; WILSON, D. V. On the self-similar
nature of ethernet traffic (extended version). IEEE/ACM Transactions on Networking, v. 2, n. 1,
p. 1–15, Feb 1994. ISSN 1063-6692.

LIBTINS: packet crafting and sniffing library. 2019. http://libtins.github.io/. [Online; accessed
May 30th, 2017].

MARKOVITCH, N. M.; KRIEGER, U. R. Estimation of the renewal function by empirical
data-a bayesian approach. In: Universal Multiservice Networks, 2000. ECUMN 2000. 1st

European Conference on. [S.l.: s.n.], 2000. p. 293–300.

Bibliography 99

MAWI Working Group Traffic Archive. 2019. http://mawi.wide.ad.jp/mawi/. [Online; accessed
January 11th, 2017].

MELO, C. A.; FONSECA, N. L. da. Envelope process and computation of the equivalent
bandwidth of multifractal flows. Computer Networks, v. 48, n. 3, p. 351 – 375, 2005. ISSN
1389-1286. Long Range Dependent Traffic. Disponível em: <http://www.sciencedirect.com/
science/article/pii/S1389128604003305>.

MINERVA ABYI BIRU, D. R. R. Towards a definition of the Internet of Things (IoT). 2015.
<https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_
Revision1_27MAY15.pdf>. (Accessed on 04/21/2019).

MININET – An Instant Virtual Network on your Laptop (or other PC). 2019. http://mininet.org/.
[Online; accessed Apr 6th, 2019].

MOLNáR, S.; MEGYESI, P.; SZABó, G. How to validate traffic generators? In: 2013

IEEE International Conference on Communications Workshops (ICC). [S.l.: s.n.], 2013. p.
1340–1344. ISSN 2164-7038.

MOONGEN. 2019. https://github.com/emmericp/MoonGen. [Online; accessed May 14th,
2016].

MULTI-GENERATOR (MGEN). 2019. http://www.nrl.navy.mil/itd/ncs/products/mgen .
[Online; accessed May 14th, 2016].

MXTRAF. 2019. http://mxtraf.sourceforge.net/. [Online; accessed January 11th, 2017].

NETFPGA. 2019. https://github.com/NetFPGA/netfpga/wiki/PacketGenerator. [Online;
accessed December 12th, 2016].

NETSPEC – A Tool for Network Experimentation and Measurement. 2019.
http://www.ittc.ku.edu/netspec/. [Online; accessed May 14th, 2016].

NG, A. Aprendizagem Automática | Coursera. 2019. <https://pt.coursera.org/learn/
machine-learning>. (Accessed on 04/23/2019).

NPING. 2019. https://nmap.org/nping/ . [Online; accessed May 14th, 2016].

OSNT Traffic Generator. 2019. https://github.com/NetFPGA/OSNT-Public/wiki/OSNT-
Traffic-Generator. [Online; accessed December 12th, 2016].

OSTINATO Network Traffic Generator and Analyzer. 2016. http://ostinato.org/. [Online;
accessed May 14th, 2016].

OSTROWSKY, L. O.; FONSECA, N. L. S. da; MELO, C. A. V. A traffic model for udp flows.
In: 2007 IEEE International Conference on Communications. [S.l.: s.n.], 2007. p. 217–222.
ISSN 1550-3607.

PACKETH. 2015. http://packeth.sourceforge.net/packeth/Home.html. [Online; accessed May
14th, 2016].

PASCHOALON, A. AndersonPaschoalon/aic-bic-paper. 2019. <https://github.com/
AndersonPaschoalon/aic-bic-paper>. (Accessed on 04/22/2019).

Bibliography 100

PASCHOALON, A. Simitar. 2019. <https://github.com/AndersonPaschoalon/Simitar>.
[Online; accessed May 30th, 2017].

Paschoalon, A. d. S.; Rothenberg, C. E. Towards a flexible and extensible framework for
realistic traffic generation on emerging networking scenarios. IX DCA/FEEC/University

of Campinas (UNICAMP) Workshop (EADCA), p. 1–4, September 2016. Disponível em:
<https://pdfs.semanticscholar.org/0c25/504a9a78ceca227b95e775e3cf9735c83fec.pdf>.

Paschoalon, A. d. S.; Rothenberg, C. E. Using bic and aic for ethernet traffic model selection.
is it worth? X DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA), p. 1–4,
October 2017. Disponível em: <https://www.fee.unicamp.br/sites/default/files/departamentos/
dca/eadca/eadcax/trabalhos/artigo_22_Using_BIC_AID_Ethernet_Traffic_Anderson_Prof_
Christian.pdf>.

Paschoalon, A. d. S.; Rothenberg, C. E. Automated selection of inter-packet time models
through information criteria. IEEE Networking Letters, p. 1–1, 2019. ISSN 2576-3156.

PATHCHIRP. 2003. http://www.spin.rice.edu/Software/pathChirp/. [Online; accessed Apr
14th, 2019].

PATHLOAD – measurement tool for the available bandwidth of network paths. 2006.
https://www.cc.gatech.edu/ dovrolis/bw-est/pathload.html. [Online; accessed Apr 14th, 2019].

PRECISETRAFGEN. 2019. https://github.com/NetFPGA/netfpga/wiki/PreciseTrafGen.
[Online; accessed December 12th, 2016].

PYSHARK · PyPI. 2019. <https://pypi.org/project/pyshark/>. (Accessed on 04/17/2019).

QIAN, B.; RASHEED, K. Hurst exponent and financial market predictability. Proceedings of

the Second IASTED International Conference on Financial Engineering and Applications, 01
2004.

QUANTILE-QUANTILE Plot. 2019. http://mathworld.wolfram.com/Quantile-
QuantilePlot.html. [Online; accessed Nov 2nd, 2018].

Q–Q plot. 2019. <https://ipfs.io/ipfs/
QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/QQ_plot.html>.
(Accessed on 05/05/2019).

Ramya, C. M.; Shanmugaraj, M.; Prabakaran, R. Study on zigbee technology. In: 2011 3rd

International Conference on Electronics Computer Technology. [S.l.: s.n.], 2011. v. 6, p.
297–301.

RIBEIRO, V.; RIEDI, R.; NAVRáTIL, J.; COTTRELL, L. pathchirp: Efficient available
bandwidth estimation for network paths. Proceedings of Passive and Active Measurement

Workshop, 04 2003.

ROLLAND, C.; RIDOUX, J.; BAYNAT, B. Litgen, a lightweight traffic generator:
Application to p2p and mail wireless traffic. In: Proceedings of the 8th International

Conference on Passive and Active Network Measurement. Berlin, Heidelberg: Springer-
Verlag, 2007. (PAM’07), p. 52–62. ISBN 978-3-540-71616-7. Disponível em: <http:
//dl.acm.org/citation.cfm?id=1762888.1762896>.

Bibliography 101

RONGCAI, Z.; SHUO, Z. Network traffic generation: A combination of stochastic and
self-similar. In: Advanced Computer Control (ICACC), 2010 2nd International Conference on.
[S.l.: s.n.], 2010. v. 2, p. 171–175.

ROSS, S. M. Introduction to Probability Models, Ninth Edition. Orlando, FL, USA: Academic
Press, Inc., 2006. ISBN 0125980620.

RUDE & CRUDE. 2002. http://rude.sourceforge.net/. [Online; accessed December 12th,
2016].

SCAPY – Packet crafting for Python2 and Python3. 2019. https://scapy.net/. [Online; accessed
Apr 6th, 2019].

SEAGULL – Open Source tool for IMS testing. 2006.
http://gull.sourceforge.net/doc/WP_Seagull_Open_Source_tool_for_IMS_testing.pdf.
[Online; accessed May 14th, 2016].

SEAGULL: an Open Source Multi-protocol traffic generator. 2009. http://gull.sourceforge.net/.
[Online; accessed May 14th, 2016].

SHORT User’s guide for Jugi’s Traffic Generator (JTG). 2019. http://www.netlab.tkk.fi/ jman-
ner/jtg/Readme.txt. [Online; accessed January 11th, 2017].

SOCKETS. 2019. https://www.gnu.org/software/libc/manual/html_node/Sockets.html.
[Online; accessed May 30th, 2017].

Soltanmohammadi, E.; Ghavami, K.; Naraghi-Pour, M. A survey of traffic issues in
machine-to-machine communications over lte. IEEE Internet of Things Journal, v. 3, n. 6, p.
865–884, Dec 2016. ISSN 2327-4662.

SOMMERS, J.; BARFORD, P. Self-configuring network traffic generation. In: Proceedings

of the 4th ACM SIGCOMM Conference on Internet Measurement. New York, NY,
USA: ACM, 2004. (IMC ’04), p. 68–81. ISBN 1-58113-821-0. Disponível em: <http:
//doi.acm.org/10.1145/1028788.1028798>.

SOMMERS, J.; KIM, H.; BARFORD, P. Harpoon: A flow-level traffic generator
for router and network tests. SIGMETRICS Perform. Eval. Rev., ACM, New York,
NY, USA, v. 32, n. 1, p. 392–392, jun. 2004. ISSN 0163-5999. Disponível em:
<http://doi.acm.org/10.1145/1012888.1005733>.

SOMMERVILLE, I. Software Engineering. Addison-Wesley, 2007. (International computer
science series). ISBN 9780321313799. Disponível em: <https://books.google.com.br/books?
id=B7idKfL0H64C>.

SOURCESONOFF. 2019. http://www.recherche.enac.fr/ avaret/sourcesonoff. [Online;
accessed December 19th, 2016].

SPIEGELHALTER, D. J.; BEST, N. G.; CARLIN, B. P.; LINDE, A. van der. The
deviance information criterion: 12 years on. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), v. 76, n. 3, p. 485–493, 2014. Disponível em:
<https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12062>.

Bibliography 102

SRIVASTAVA, S.; ANMULWAR, S.; SAPKAL, A. M.; BATRA, T.; GUPTA, A. K.; KUMAR,
V. Comparative study of various traffic generator tools. In: Engineering and Computational

Sciences (RAECS), 2014 Recent Advances in. [S.l.: s.n.], 2014. p. 1–6.

TCPDUMP & Libpcap. 2019. http://www.tcpdump.org/. [Online; accessed May 14th, 2016].

TCPDUMP/LIBPCAP public repository. 2019. http://www.tcpdump.org/. [Online; accessed
May 30th, 2017].

TCPIVO: A High Performance Packet Replay Engine. 2019.
http://www.thefengs.com/wuchang/work/tcpivo/. [Online; accessed May 14th, 2016].

TCPREPLAY home. 2019. http://tcpreplay.appneta.com/. [Online; accessed May 14th, 2016].

THE OpenDayLight Platform. 2019. https://www.opendaylight.org/. [Online; accessed May
29th, 2017].

THE Swing Traffic Generator. 2019. http://cseweb.ucsd.edu/ kvishwanath/Swing/. [Online;
accessed May 14th, 2016].

TRAFFIC Generator. 2011. http://www.postel.org/tg/. [Online; accessed May 14th, 2016].

TSHARK - The Wireshark Network Analyzer 3.0.1. 2019. <https://www.wireshark.org/docs/
man-pages/tshark.html>. (Accessed on 04/17/2019).

Tune, P.; Roughan, M.; Cho, K. A comparison of information criteria for traffic model
selection. In: 2016 10th International Conference on Signal Processing and Communication

Systems (ICSPCS). [S.l.: s.n.], 2016. p. 1–10.

UNDERSTANDING Q-Q Plots | University of Virginia Library Research Data Services +
Sciences. 2019. <https://data.library.virginia.edu/understanding-q-q-plots/>. (Accessed on
05/05/2019).

VARET, N. L. A. Realistic network traffic profile generation: Theory and practice. Computer

and Information Science, v. 7, n. 2, 2014. ISSN 1913-8989.

VISHWANATH, K. V.; VAHDAT, A. Evaluating distributed systems: Does background traffic
matter? In: USENIX 2008 Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2008. (ATC’08), p. 227–240. Disponível em: <http://dl.acm.org.ez88.periodicos.
capes.gov.br/citation.cfm?id=1404014.1404031>.

VISHWANATH, K. V.; VAHDAT, A. Swing: Realistic and responsive network traffic
generation. IEEE/ACM Transactions on Networking, v. 17, n. 3, p. 712–725, June 2009. ISSN
1063-6692.

W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). 2019. <https://www.w3.org/
TR/REC-xml/#sec-intro>. (Accessed on 04/21/2019).

WEISSTEIN, E. W. Self-similarity. From MathWorld–A Wolfram Web Resource, 2019.
Disponível em: <http://mathworld.wolfram.com/Self-Similarity.html>.

WELCOME to BRUTE homepage! 2003. http://wwwtlc.iet.unipi.it/software/brute/ . [Online;
accessed May 14th, 2016].

Bibliography 103

WELCOME to the Netperf Homepage. 2019. http://www.netperf.org/netperf/. [Online;
accessed May 14th, 2016].

WILK, M. B.; GNANADESIKAN, R. Probability plotting methods for the analysis for the
analysis of data. Biometrika, v. 55, n. 1, p. 1–17, 03 1968. ISSN 0006-3444. Disponível em:
<https://doi.org/10.1093/biomet/55.1.1>.

WILLINGER, W.; TAQQU, M. S.; SHERMAN, R.; WILSON, D. V. Self-similarity through
high-variability: statistical analysis of ethernet lan traffic at the source level. IEEE/ACM

Transactions on Networking, v. 5, n. 1, p. 71–86, Feb 1997. ISSN 1063-6692.

Wu, X.; Xu, K.; Hall, P. A survey of image synthesis and editing with generative adversarial
networks. Tsinghua Science and Technology, v. 22, n. 6, p. 660–674, December 2017. ISSN
1007-0214.

YANG, Y. Can the strengths of aic and bic be shared? a conflict between model
indentification and regression estimation. Biometrika, v. 92, n. 4, p. 937, 2005. Disponível em:
<+http://dx.doi.org/10.1093/biomet/92.4.937>.

Yu, L.; Qi, D. Hölder exponent and multifractal spectrum analysis in the pathological changes
recognition of medical ct image. In: 2011 Chinese Control and Decision Conference (CCDC).
[S.l.: s.n.], 2011. p. 2040–2045. ISSN 1948-9439.

104

A Probability and Math Revision

A.1 Random variable

We call random variable X a measurable real-valued function of possible outcomes

(Ω) defined on a sample space(E).

X : Ω → E (A.1)

A.2 Probability Density Function (PDF)

Variable X is a continuous random variable if if there is a function f (x), that satisfies

for a set B = {b ∈ R|b1 ≤ b ≤ b2}, defined for all x = {x ∈ R| −∞ ≤ x ≤ +∞}, having the

property:

P(X ∈ B) =
∫ b2

b1

f (x)dx (A.2)

Where P is the probability function of the random variable x. f (x) is called proba-

bility density function of the random variable X [Ross 2006].

A.3 Cumulative Distribution Function (CDF)

The Cumulative Distribution Function of a real-valued random variable X , is a func-

tion F(x) defined by [Ross 2006]:

F(x) = P(X ≤ x) =
∫ x

−∞
f (x)dx (A.3)

Where f (x) is the probability density function (PDF) of X .

A.4 Expected value, Mean, Variance and Standard Deviation

Let X be a constinuous real-valued random variable, and f (x) be its probability

density function (PDF). Then the expected value of X is defined by:

E[X] =
∫ +∞

−∞
x f (x)dx (A.4)

Appendix A. Probability and Math Revision 105

For a random variable normally distributed Xnormal the result of this definition is

equals to its mean µ of the distribution.

E[Xnormal] = µ (A.5)

For an exponential distribution is equals to the inverse of its rate:

E[Xexponential] =
1
λ

(A.6)

The variance of a random variable X , denoted by Var(X), is defined by:

var(X) = E[X2]− (E[x])2 (A.7)

For a random variable X normally distributed, the variance is equal to its standard

deviation [Ross 2006]:

var(X) = σ2 (A.8)

For a finite data X = {x1,x2, ...,xn}set we can estimate the mean and standard devi-

ation using the follow equations:

µ =
1
n

i=1

∑
n

Xi (A.9)

σ =

√
1
n
[(x1 −µ)2 +(x2 −µ)2 + ...+(xn −µ)2]] (A.10)

A.5 Stochastic Process

A stochastic process of a random variable represented by {X(t)|t ∈ T} is a collec-

tion of random variables. Since t is often interpreted as time, X(t) is usually referred as the state

of the process at a given time t [Ross 2006].

A.6 Correlation (Pearson correlation coefficient)

Letting (X ,Y) be a pai of real-valued random variables, the covariance is defined

by:

cov(X ,Y) = E[(X −E[X])(Y −E[Y])] (A.11)

Appendix A. Probability and Math Revision 106

And the Pearson’s correlation coefficient is defined by:

cor(X ,Y) =
cov(X ,Y)

σX σY
(A.12)

Where:

σX =
√

E[X2]−E[X]2 (A.13)

A.7 Autocorrelation of a finite time series

The autocorrelation function measures the correlation between data samples yt and

yt+k, where k = 0, ...,K, and the data sample {y} is generated by a stochastic process.

According to [Box et al. 1994], the autocorrelation for a lag k is:

rk =
ck

c0
(A.14)

where

ck =
1

T −1

T−k

∑
t=1

(yt − ȳ)(yt+k − ȳ) (A.15)

and c0 is the sample variance of the time series.

A.8 Self-similarity

A self similar object has the property of looking "roughly" the same at any scale.

Self-similar objects are described by the power law:

N = sd (A.16)

where

d =
lnN

lns
(A.17)

is the dimension of the scaling law, called Hausdorff dimension [Weisstein 2019].

Appendix A. Probability and Math Revision 107

Figure 42 – This is a classical example of a self-similar figure, caled Sierpinski triangle.

A.9 Hurst Exponent

For a time-series X = {X1,X2, ...,Xn}, letting m be the time series mean:

µ =
1
n

i=1

∑
n

Xi (A.18)

We can calculate the adjusted series Y by:

Y = {Yt}= {Xt −µ} (A.19)

for t = 1,2, ...,n. We can calculate the cumulative deviate series Z by:

Zt =
1

∑
t

Yi, t = 1,2, ...,n (A.20)

We can than calculate the time series range by:

R(n) = max(Z1,Z2, ...,Zn)−min(Z1,Z2, ...,Zn) (A.21)

And its standard deviation by:

S(n) =

√
1
n

n

∑
i=1

(Xi −µ)2 (A.22)

Appendix A. Probability and Math Revision 108

Letting E[x] be the expected value of a real-valued random variable X , and C a

constant, the Hurst Exponent H is defined by [Qian e Rasheed 2004]:

E

[
R(n)

S(n)

]
=CnH , n → ∞ (A.23)

A.10 Heavy-tailed distributions

Heavy tailed distributions are probability distributions whose tails are not exponen-

tially bounded. A distribution of of a real-valued random variable X , with cumulative distribu-

tion F(x), is said to be heavy tailed, if it satisfies this condition for all λ ∈ R:

lim
x→∞

eλx(1−F(x)) = ∞ (A.24)

A.11 QQplot analysis

QQplot is used to test if two data-sets comes from a common distribution [Quantile-

Quantile Plot 2019] [WILK e GNANADESIKAN 1968] [Understanding Q-Q Plots | University

of Virginia Library Research Data Services + Sciences 2019] [Q–Q plot 2019]. In our study

case, we used to compare empirical data with theoretical given by model approximations. We

show down below the image presented in Chapter 2 for reference. Looking on how the dot plot

behaves compared to the linear line, we can see how well the theoretical plot (the estimated

data, on the horizontal axis) represents the actual values (sample data, vertical axis):

• Light-tailed: the samples still hold a slight heavy-tail effect compared to the estimated

by the theoretical values.

• Heavy-tailed: the samples have a predominant heavy-tail effect compared to the esti-

mated by the theoretical values.

• Linear: the samples match the theoretical values.

• Bimodal: samples present a bimodal pattern.

• Left skew: small values are under-represented by the model (44).

• Right skew: larger values are under-represented by the model (44).

As an example, we created a QQplot (Figure 45), where we used as samples ran-

domly generated data, generated by a Cauchy, and theoretical values, normal random data.

Comparing with the Figure 43, we can identify a heavy tail behavior on the sample data.

Appendix A. Probability and Math Revision 110

import numpy as np

import matplotlib.pyplot as plt

nn = sorted(np.random.standard_normal(30))

cc = sorted(np.random.standard_cauchy(30))

nn_max = max(nn)

nn_min = min(nn)

cc_max = max(cc)

cc_min = min(cc)

yy = np.linspace(cc_min, cc_max, num=10)

xx = np.linspace(nn_min, nn_max, num=10)

fig, ax = plt.subplots()

ax.plot(nn, cc, 'bo', markersize=10.0)

ax.plot(xx, yy, 'r-', linewidth=4.0)

plt.xlabel('estimated (normal data)')

plt.ylabel('samples (cauchy data)')

plt.tick_params(labelsize=14)

plt.tight_layout()

plt.show()

A.12 Akaike information criterion (AIC) and Bayesian information

criterion (BIC)

Suppose that we have an statistical model M of some dataset x = {x1, ...,xn}, with n

independent and identically distributed observations of a random variable X . This model can be

expressed by a PDF f (x|θ), where θ a vector of parameter of the PDF, θ ∈R
k (k is the number

of parameters). The likelihood function of this model M is given by:

L(θ |x) = f (x1|θ) · ... · f (xn|θ) =
n

∏
i=1

f (xi|θ) (A.25)

Now, suppose we are trying to estimate the best statistical model, from a set

M1, ...,Mn, each one whit an estimated vector of parameters θ̂1, ..., θ̂n. AIC and BIC are defined

by:

AIC = 2k− ln(L(θ̂ |x)) (A.26)

BIC = k ln(n)− ln(L(θ̂ |x)) (A.27)

Appendix A. Probability and Math Revision 111

In both cases, the preferred model Mi, is the one with the smaller value of AICi or

BICi.

A.13 Gradient Descendent Algorithm

Given a linear hypothesis for a dataset:

hθ = θ T x (A.28)

were hθ ,θ ,x ∈ R
m. If m = 2 we will just have a simple linear equation hθ (x) =

θ0 +θ1x.

The goal of the gradient descendent is to minimize the cost function J∇(θ), defined

by:

J∇(θ) =
1

2m

m

∑
i=1

(hθ (x
(i)− y(i))2 (A.29)

To do this, we initialize a θ j vector (usually with zeros), and repeat this procedure,

until θ j converges:

θ j+1 := θ j −α
1
m

m

∑
i=1

(hθ (x
(i)− y(i))xi

j (A.30)

where α is the step value, typically a small positive number. All values of θ j must

be updated simultaneously [Ng 2019].

112

B Computer Networks Review

B.1 Network Stack

Network Stack [Kurose 2017] or Protocol stack is the implementation of computer

networks, where a known set of protocols are responsible for delivering the data. The Stack is

composed of five layers: Application, Transport, Network, Link and Physical layer.

• Application-layer: This layer is responsible for delivery to the processes the data.This

layers deliver Data. Some protocols are HTTP, HTTPS, Telnet, DNS, FPT, and SMTP.

• Transport-layer: It is responsible for establishing the communication between hosts (end-

to-end communication) and deliver reliability to the data. This layer delivers Segments.

The main protocols are TCP and UDP.

• Newtwork-layer: It is responsible for the path determination and addressing between the

end-points. This layer delivers Packets. As examples of protocols we have IP (IPv4 and

IPv6), and ICMP.

• Link-layer: It is responsible for the communication and data delivery between hosts and

adjacent nodes on LANs and WANs. This layer delivers Frames. Some protocols are

ARP, MAC (Ethernet), and Wi-Fi (IEEE 802.11) protocols, Bluetooth protocols, and Zig-

Bee (IEEE 802.15) protocols.

• Physical-layer: This layer is the hardware implementation of the Link-layer protocols,

and is responsible for the bit transmission.

B.2 Software Defined Networking (SDN)

Software Defined Network [Kreutz et al. 2015] is a network achitecture where the

forwarding plane (switches and routers, the data plane), and the network control logic (network-

ing policies, the control plane) are separated, introducing the ability of program the network.

SDN architecture has four main pillars:

i The control plane and the data plane are decoupled: control functionalities are removed

from network devices;

ii The forwarding policies are flow-based, instead of destination-based;

iii The logic resides on an external entity, the Network Operational System(NOS);

Appendix B. Computer Networks Review 113

iv The network in programmable through applications that runs on the NOS.

The most consolidate protocol that does the communication between the control plane and

the data plane is OpenFlow. As examples of Controllers or NOS, we have OpenDayLight and

Beacon.

B.3 Network Function Virtualization (NFV)

Network Function Virtualization (NFV) [Huang et al. 2018] is a concept and ar-

chitecture that leveraging IT virtualization technologies, aims to consolidate proprietary and

hardware-based middleboxes, such as firewalls, WAN accelerators, routers, and load-balancers

into commodity hardware, such as x86 servers, and high-volume switches and storages. NFV

architecture has three main layers:

• NFVI (NFV Infrastructure): This layer comprehends the actual physical network in-

frastructure, a virtualization layer, and virtualized resources of computing, storage, and

networking;

• VNF-layer (Virtual Network Functions Layer): this is the layer where the virtualized

network functions run, and consume resources provided by the NFVI.

• MANO (Management and Orchestration): On this layer resides the NFV Orchestrator,

the VNF manager, and the Virtualized Infrastructure Manager.

B.4 Internet of Things (IoT)

Internet of Things(IoT) [Minerva Abyi Biru 2015] can be defined as "A network

of items – each embedded with sensors – which are connected to the Internet." [Minerva

Abyi Biru 2015]. The architecture of IoT has three main layers: Applications, Networking and

Data-communication, and Sensing.

114

C Traffic Generators Survey

C.1 Introduction

This appendix contains the cut-content of chapter 2, serving now as complementary

material. In the first section we show an extensive survey on traffic generator tools, and on the

second, some use-cases of traffic-generators validation.

C.2 Traffic generator tools

In this section, we present a short review of many open-source tools available for

synthetic traffic generation and benchmark. The aim in this section is to present the most men-

tioned tools in the literature and the most recent and advanced ones. On tables are presented a

survey of the main features of such tools. Some free, but not open-source traffic generators are

listed as well. Before present our survey, we refer to some tools mentioned in the literature, but

we could not find source code and manual.

BRUNO [Antichi et al. 2008] is traffic generator implemented aiming performance

and accuracy on timings. It has many configurable parameters that allow emulation of many

web server scenarios. Divide and conquer [Molnár et al. 2013]: is a replay engine that works

in a distributed manner. It can split traces among multiple commodity PCs, and reply packets,

to produce realistic traffic.

Some others mentioned tools [D-ITG, Distributed Internet Traffic Generator 2015]

we were not able to find any reference of available features are: UDPgen, Network Traffic

Generator, Packet Shell, Real-Time Voice Traffic Generator, PIM-SM Protocol Indepen-

dent Multicast Packet Generator, TTCP, SPAK, Packet Generator, TfGen, TrafGen and

Mtools. Table 18 presents an updated list of links for download.

C.2.1 Traffic Generators - Feature Survey

Tables 14, 15, 16, and 17 is presented a survey of of the main features of such

tools, such as support for Operational systems, protocols, stochastic functions available for

traffic generation, and traffic generator class. Some free, but not open-source, traffic generators

are listed as well.

Appendix C. Traffic Generators Survey 115

Table 14 – Summary of packet-level traffic generators.

Packet-level Traffic Generators
Traffic

Generator
Operating System

Network
Protocols

Available
stochastic distributions

Interface

D-ITG
Linux, Windows,
Linux Familiar,

Montavista, Snapgear

IPv4-6, ICMP, TCP
UDP, DCCP, SCTP

constant, uniform,
exponential, pareto,

cauchy, normal,
poisson, gamma

CLI,
Script,

API

Ostinato
Linux, Windows,

FreeBDS

Ethernet/802.3/LLC,
SNAP; VLAN, (with QinQ);

ARP, IPv4-6-Tunnelling;
TCP, UDP, ICMPv4,

ICMPv6, IGMP, MLD;
HTTP, SIP, RTSP, NNTP,

custom protocol, etc...

constant

GUI,
CLI,

script,
API

PackETH
Linux, MacOS,

Windows

Ehernet II, ethernet 802.3,
802.1q, QinQ, ARP,

IPv4-6, UDP, TCP, ICMP,
ICMPv6, IGMP

constant CLI, GUI

Seagull Linux, Windows
IPv4-6, UDP, TCP, SCTP,
SSL/TLS and SS7/TCAP.

custom protocol

constant,
poisson

CLI, GUI

Iperf

Windows, Linux,
Android, MacOS X,
FreeBSD, OpenBSD,
NetBSD, VxWorks,

Solaris

IPv4-6, UDP, TCP, SCTP constant CLI, API

BRUTE Linux IPv4-6, UDP, TCP
constant, poisson,

trimodal, exponential
CLI, script

SourcesOnOff Linux IPv4, TCP, UDP
weibull, pareto,

exponential, normal
CLI

TG
Linux, FreeBSD,
Solaris SunOS

IPv4, TCP, UDP
constant, uniform,

exponential
CLI

Mgen Linux(Unix), Windows IPv4-6, UDP, TCP, SINK constant, exponential, CLI, Script
KUTE Linux 2.6 UDP constant kernel module

RUDE &
CRUDE

Linux, Solaris SunOS,
FreeBSD

IPv4, UDP constant CLI

NetSpec Linux IPv4,UDP, TCP
uniform, normal, log-normal,

exponential, poisson,
geometric, pareto, gamma

script

Nping Windows, Linux, Mac OS X
TCP, UDP, ICMP,

IPv4-6, ARP
constant CLI

MoonGen Linux
IPv4-6, IPsec,

ICMP, UDP, TCP
constant, poisson scipt API

Dpdk
Pktgen

Linux
IPv4, IPv6, ARP,
ICMP, TCP, UDP

constant CLI, script API

LegoTG Linux (depend on underlying tool) (depend on underlying tool) CLI, script
gen_send/
gen_recv

Solaris, FreeBSD,
AIX4.1, Linux

UDP constant CLI

mxtraf Linux TCP, UDP, IPv4 constant GUI, script
Jigs Traffic

Generator (JTG)
Linux TCP, UDP, IPv4-6 constant CLI

C.2.2 Packet-level traffic generators

D-ITG [Botta et al. 2012] [D-ITG, Distributed Internet Traffic Generator 2015]: D-

ITG (Distributed Internet Traffic Generator) is a platform capable to produce IPv4 and IPv6 traf-

fic defined by IDT and PS probabilistic distributions such as constant, uniform, Pareto, Cauch,

Normal, Poisson, Gamma, Weibull, and On/Off; both configurable and pre-defined for many

applications, from Telnet, through online games. It provides many flow-level options of cus-

tomization, like duration, start delay and number of packets, support to many link-layer and

Appendix C. Traffic Generators Survey 116

Table 15 – Summary of multi-level and flow-level traffic generators.

Flow and Multi-level Traffic Generators
Traffic

Generator
Operating System

Network
Protocols

Model Interface

Swing Linux
IPv4, TCP, UDP,

HTTP, NAPSTER,
NNTP and SMTP

Multi-level
auto-configurable

Ethernet
CLI

Harpoon
FreeBSD, Linux,
MacOS X, Solaris

TCP, UDP, IPv4,
IPv6

Flow-level
auto-configurable

Ethernet
CLI

LiTGen - - Multi-level Wifi -

EAR Linu
IEEE 802.11, ICMP, UDP,

TCP, TFTP, Telnet
"Event Reproduction Ratio" techinique -

wireless IEEE 802.11
-

Table 16 – Summary of application-level traffic generators.

Application-level Traffic Generators
Traffic

Generator
Operating System Model Interface

GenSyn Java Virtual Machine User-behavior emulation GUI

D-ITG
Linux, Windows, Linux

Familiar, Montavista, Snapgear

Telnet, DNS, Quake3,
CounterStrike (active and inactive),

VoIP (G.711, G.729, G.723)
CLI

Surge Linux Client/Server CLI
Httperf Linux HTTP/1.0, HTTP/1.1 CLI

VoIP Traffic Generator - VoIP CLI
ParaSynTG - HTTP workload properties CLI

NetSpec LInux
HTTP, FTP, Telnet, Mpev video,
voice and video teleconference

CLI

Table 17 – Summary of replay-engines traffic generators.

Replay-Engines Traffic Generators
Traffic

Generator
Operating System Implementation

Ostinato Linux, Windows, FreeBDS Software-only

PackETH
Linux, MacOS,

Windows
Software-only

BRUNO Linux hardware-dependent
TCPReplay Linux Software-only

TCPivo Linux Software-only
NetFPGA

PacketGenerator
Linux Hardware

NetFPGA
Caliper

Linux Hardware

NetFPGA
OSTN

Linux Hardware

MoonGen Linux Hardware-dependent
DPDK Pktgen Linux Hardware-dependent

NFPA Linux hardware-dependent

transport-layer protocols, options, sources and destinations addresses/ports. It has support for

NAT traversal, so it is possible to make experiments between two different networks separated

by the cloud. D-ITG can also be used to measure packet loss, jitter, and throughput. D-ITG may

be used through a CLI, scripts, or a API, that can be used to create applications and remotely

control other hosts through a daemon.

Ostinato [Ostinato Network Traffic Generator and Analyzer 2016]: Ostinato is a

packet crafter, network traffic generator and analyzer with a friendly GUI (“Wireshark in re-

verse” as the documentation says) and a Python API. This tool permits craft and sends packets

Appendix C. Traffic Generators Survey 117

of different protocols at different rates. Support Server/Client communication and a vast variety

of protocols, from the link layer (such as 802.3 and VLAN) to the application layer (such HTTP

and IP). It is also possible to add any unimplemented protocols, through scripts defined by the

user.

Seagull [Seagull – Open Source tool for IMS testing 2006] [Seagull: an Open

Source Multi-protocol traffic generator 2009]: an Open Source Multi-protocol traffic genera-

tor 2009]: Seagull is a traffic generator and test open-source tool, released by HP. It has support

of many protocols, from link layer to application layer, and its support is easily extended, via

XML dictionaries. As the documentation argues, the protocol extension flexibility is one of the

main features. It supports high speeds, and is reliable, being tested through hundreds of hours.

It can also generate traffic using three statistical models: uniform (constant), best-effort and

Poisson.

BRUTE [Welcome to BRUTE homepage! 2003]: Is a traffic generator that operates

on the top of Linux 2.4-6 and 2.6.x, not currently being supported on newer versions. It also

supports some stochastic functions (constant, poison, trimodal) for departure time burst, and

can simulate VoIP traffic.

PackETH [PACKETH 2015]: PackETH is GUI and CLI stateless packet generator

tool for ethernet. It supports many adjustments of parameters, and many protocols as well, and

can set MAC addresses.

Iperf [iPerf - The network bandwidth measurement tool 2019]: Ipef is a network

traffic generator tools, designed for the measure of the maximum achievable bandwidth on IP

networks, for both TCP and UDP traffic, but can evaluate delay, windows size, and packet loss.

It has a GUI interface, called Jperf [JPerf 2019]. There is also a JavaAPI, for automating tests

s [jperf 2015]. Support IPv4 and IPv6.

NetPerf [Welcome to the Netperf Homepage 2019]: Netperf is a benchmark tool

that can be used to measure the performance of many types of networks, providing tests for

both unidirectional throughput and end-to-end latency. It has support for TCP, UDP, and SCTP,

both over IPv4 and IPv6.

sourcesOnOff [Varet 2014] [sourcesonoff 2019]: sourcesOnOff is a new traffic gen-

erator released on 2014, that aims to generate realistic synthetic traffic using probabilistic mod-

els to control on and off time of traffic flows. As shown on the paper, it is able to guarantee

self-similarity, an has support to many probabilistic distributions for the on/off times: Weibull,

Pareto, Exponential and Gaussian. Supports TCP and UDP over IPv4.

TG [Traffic Generator 2011]: TG is a traffic generator that can generate and receive

one-way packet streams transmitted from the UNIX user level process between source and

traffic sink nodes. A simple specification language controls it, that enables the craft of different

lengths and interarrival times distributions, such as Constant, uniform, exponential and ON/OFF

Appendix C. Traffic Generators Survey 118

(markov2).

1MGEN [Multi-Generator (MGEN) 2019]: MGEN (Multi-Generator) is a traffic

generator developed by the Naval Research Laboratory (NRL) PROTocol Engineering Ad-

vanced Networking (PROTEAN) Research Group. It can be used to emulate the traffic pat-

terns of unicast and/or multicast UDP and TCP IP applications. It supports many different types

of stochastic functions, nominated periodic, Poisson, burst jitter and clone which can control

inter-departure times and packet size.

KUTE [KUTE – Kernel-based Traffic Engine 2007]: KUTE is a kernel level packet

generator, designed to have a maximum performance traffic generator and receiver mainly for

use with Gigabit Ethernet. It works in the kernel level, sending packets as fast as possible, direct

to the hardware driver, bypassing the stack. However, KUTE works only on Linux 2.6, and has

only be tested on Ethernet Hardware. Also, it only supports constant UDP traffic.

RUDE & CRUDE [RUDE & CRUDE 2002]: RUDE (Real-time UDP Data Emit-

ter) and CRUDE (Collector for RUDE), are small and flexible programs which run on user-level.

It has a GUI called GRUDE. It works only with UDP protocol.

2NetSpec [NetSpec – A Tool for Network Experimentation and Measurement

2019]: NetSpec is a tool designed to do network tests, as opposed to doing point to point testing.

NetSpec provides a framework that allows a user to control multiple processes across multiple

hosts from a central point of control, using daemons that implement traffic sources and sinks,

along with measurement tools. Also, it can model many different traffic patterns and applica-

tions, such as maximum host rate, Constant Bit Rate (CBR), WWW, World Wide Web, FTP,

File Transfer Protocol, telnet, MPEG video, voice, and video teleconference.

Nping [Nping 2019]: active hosts, as a traffic generator for network stack stress

testing, ARP poisoning, Denial of Service attacks, route tracing, etc. Nping CLI permits the

users control over protocols headers.

TCPreplay [Tcpreplay home 2019]: TCPreplay is a user-level replay engine, that

can use pcap files as input, and then forward, packets in a network interface. It can modify some

header parameters as well.

TCPivo [Feng et al. 2003] [TCPivo: A High Performance Packet Replay Engine

2019]: TCPivo is a high-speed traffic replay engine that is able to read traffic traces, and replay

packets in a network interface, working at the kernel level. It is not currently supported kernel

versions greater than 2.6.

NetFPGA PacketGenerator [NetFPGA 2019]: NetFPGA Packet Generator is a

hardware-based traffic generator and capture tool, build over the NetFPGA 1G, and open FPGA

platform with 4 ethernet interfaces of 1 Gigabit of bandwidth each. It is a replay engine tool

1 not open-source
2 not open-source

Appendix C. Traffic Generators Survey 119

which uses as input pcap files. It is able to accurately control the delay between the frames, with

the default delay being the same in the pcap file. It is also able to capture packets and report

statistics of the traffic.

NetFPGA Caliper [PreciseTrafGen 2019]: is a hardware-based traffic generator,

build on NetFPGA 1G, built over NetThreads platform, an FPGA microprocessor which support

threads programming. Different form NetFPGA Packet Generator, Caliper can produce live

packets. It is written in C.

NetFPGA OSNT [OSNT Traffic Generator 2019]: OSNT (Open Source Network

Tester) is hardware based network traffic generator built over the NetFPGA 10G. As NetFPGA

1G, NetFPGA 10G is an FPGA platform with 4 ethernet interfaces, but with 10 Gigabits of

bandwidth. OSNT is a replay engine and is loaded with pcap traces.

Dpdk Pktgen [Getting Started with Pktgen 2015]: Pktgen is a traffic generator mea-

surer built over DPDK. DPDK is a development kit, a set of libraries and drivers for fast packet

processing. DPDK was designed to run on any processor but has some limitation in terms of

supported NICs, that can be found on its website.

MoonGen [Emmerich et al. 2015] [MoonGen 2019]: MoonGen is a scriptable high-

speed packet generator built over DPDK and LuaJIT. It can send packets at 10 Gbit/s, even with

64 bytes packets on a single CPU core. MoonGen can achieve this rate even if each packet is

modified by a Lua script. Also, it provides accurate timestamping and rate control. It is able to

generate traffic using several protocols (IPv4, IPv6, IPsec, ARP, ICMP, UDP, and TCP), and

can generate different inter-departure times, like a Poisson process and burst traffic.

gen_send/gen_recv [gen_send, gen_recv: A Simple UDP Traffic Generater Appli-

cation 2019]: gen_send and gen_recv are simple UDP traffic generator applications. It uses

UDP sockets. gen_send can control features like desired data rate, packet size and inter-packet

time.

mxtraf [mxtraf 2019]: mxtraf enables a small number of hosts to saturate a network,

with a tunable mixture of TCP and UDP traffic.

Jigs Traffic Generator (JTG) [Short User’s guide for Jugi’s Traffic Generator

(JTG) 2019]: is a simple, accurate traffic generator. JTG process only sends one stream of

traffic, and stream characteristics are defined only by command line arguments. It also supports

IPv6.

C.2.3 Application-level/Special-scenarios traffic generators

3ParaSynTG [Khayari et al. 2008]: application-level traffic generator configurable

by input parameters, which considers most of the observes www traffic workload properties.

3 not open-source

Appendix C. Traffic Generators Survey 120

4GenSyn [GenSyn - generator of synthetic Internet traffic 2019]: network traffic

generator implemented in Java that mimics TCP and UDP connections, based on user behavior.

Surge [Barford e Crovella 1998]: Surge is an application level workload generator

which emulates a set of real users accessing a web server. It matches many empirical measure-

ments of real traffic, like server file distribution, request size distribution, relative file popularity,

idle periods of users and other characteristics.

Httperf [httperf(1) - Linux man page 2019]: Is an application lever traffic generator

to measure web server performance. It uses the protocol HTTP (HTTP/1.0 and HTTP/1.1), and

offer many types of workloads while keeping track of statistics related to the generated traffic.

Its most basic operation is to generate a set of HTTP GET requests and measure the number of

replies and response rate.

VoIP Traffic Generator: it is a traffic generator written in Perl that creates multiple

streams of traffic, aiming to simulate VoIP traffic.

C.2.4 Flow-level and multi-level traffic generators

Harpoon [Sommers et al. 2004]: Harpoon is a flow-based traffic generator, that can

automatically extract form Netflow traces parameters, in order to generate flows that exhibit the

same statistical characteristics measured before, including temporal and spatial characteristics.

Swing [Vishwanath e Vahdat 2009] [The Swing Traffic Generator 2019]: Swing

is a closed-loop multi-layer and network responsive generator. It can read capture traces and

captures the packet interactions of many applications, being able to models distributions for

the user, application, and network behavior, stochastic and responsively. Swing can model user

behavior, REEs, connection, packets, and network.

5LiTGen (Lightweight Traffic Generator) [Rolland et al. 2007] is an open-loop,

multilevel traffic generator. It can model wireless network traffic in a peer user and application

basis. This tool model the traffic in three different levels: packet level, object level (smaller parts

of an application session), and session level.

6EAR [Ku et al. 2012]: traffic generator that uses a technique

called“EventReproduction Ratio” to mimic wireless IEEE 802.11 protocol behavior.

4 not open-source
5 not open-source
6 not open-source

Appendix C. Traffic Generators Survey 121

C.2.5 Others traffic generation tools

NFPA [Csikor et al. 2015]: NFPA is a benchmark tool based on DPDK Pkgen,

specialized in executing and automatize performance measurements over network functions. It

works being directly connected to a specific device under tests. It uses built-in, and user-defined

traffic traces and Lua scripts control and collect information of DPDK Pktgen. It has a command

line and Web interface, and automatically plot the results.

LegoTG [Bartlett e Mirkovic 2015]: LegoTG is a modular framework for compos-

ing custom traffic generation. It aims to simplify the combination on the use of different traffic

generators and modulators on different testbeds, automatizing the process of installation, ex-

ecution, resource allocation, and synchronization via a centralized orchestrator, which uses a

software repository. It already has support to many tools, and to add support to new tools is

necessary to add and edit two files, called TG block, and ExFile.

C.2.6 Traffic Generators – Repository Survey

C.3 Validation of Ethernet traffic generators: some use cases

In this section, we list some use cases of validation of Ethernet traffic generators.

Our validation methods used in Chapter 4 and 5 were based on them. We are going to present

seven different study cases on validation of related traffic generators. They are Swing, Harpoon

[Sommers e Barford 2004], D-ITG [Botta et al. 2012], sourcesOnOff [Varet 2014], MoonGen

[Emmerich et al. 2015], LegoTG [Bartlett e Mirkovic 2015] and NFPA [Csikor et al. 2015].

C.3.1 Swing

Swing [Vishwanath e Vahdat 2009] is at present, one of the primary references of

realistic traffic generation. The authors extracted bidirectional metrics from a network link of

synthetic traces. Their goals were to get realism, responsiveness, and randomness. They define

realism as a trace that reflects the following characteristics of the original:

Packet inter-arrival rate and burstiness across many time scales;

• Packet size distributions;

• Flow characteristics as arrival rate and length distributions;

• Destination IPs and port distributions.

The traffic generator uses a structural model the account interactions between many

layers of the network stack. Each layer has many control variables, which is randomly generated

Appendix C. Traffic Generators Survey 122

Table 18 – Links for the traffic generators repositories

Traffic Generator Repository

D-ITG http://traffic.comics.unina.it/software/ITG/
Ostinato http://ostinato.org/
Seagull http://gull.sourceforge.net/
BRUTE http://wwwtlc.iet.unipi.it/software/brute/
PackETH http://packeth.sourceforge.net/packeth/Home.html
Iperf https://iperf.fr/
NetPerf http://www.netperf.org/netperf/
sourcesOnOff http://www.recherche.enac.fr/ avaret/sourcesonoff
TG http://www.postel.org/tg/
MGEN* http://www.nrl.navy.mil/itd/ncs/products/mgen
KUTE http://caia.swin.edu.au/genius/tools/kute/
RUDE & CRUDE http://rude.sourceforge.net/
Pktgen http://www.linuxfoundation.org/collaborate/workgroups/networking/pktgen
NetSpec http://www.ittc.ku.edu/netspec/
Nping https://nmap.org/nping/
TCPreplay http://tcpreplay.appneta.com/
TCPivo http://www.thefengs.com/wuchang/work/tcpivo/
NetFPGA PacketGenerator https://github.com/NetFPGA/netfpga/wiki/PacketGenerator
NetFPGA Caliper https://github.com/NetFPGA/netfpga/wiki/PreciseTrafGen
NetFPGA OSNT https://github.com/NetFPGA/OSNT-Public/wiki/OSNT-Traffic-Generator
DPDK Pktgen http://pktgen.readthedocs.io/en/latest/getting_started.html
MoonGen https://github.com/emmericp/MoonGen
gen_send/gen_recv http://www.citi.umich.edu/projects/qbone/generator.html
mxtraf http://mxtraf.sourceforge.net/

JTG
https://sourceforge.net/projects/iperf/files/
https://github.com/AgilData/jperf

GenSyn http://www.item.ntnu.no/people/personalpages/fac/poulh/gensyn
SURGE http://cs-www.bu.edu/faculty/crovella/surge_1.00a.tar.gz
Httperf https://linux.die.net/man/1/httperf
VoIP Traffic Generator https://sourceforge.net/projects/voiptg/
Harpoon http://cs.colgate.edu/ jsommers/harpoon/
Swing http://cseweb.ucsd.edu/ kvishwanath/Swing/
NFPA
LegoTG

by a stochastic process. They begin the parameterization, classifying [Tcpdump & Libpcap

2019] pcap files with the data; they can estimate parameters.

They validate the results using public available traffic traces, from [MAWI Working

Group Traffic Archive 2019] and CAIDA [CAIDA Center for Applied Internet Data Analysis

2019]. On the paper, the authors focuses on the validation metrics below:

• Comparison of estimated parameters of the original and swing generated traces;

Appendix C. Traffic Generators Survey 123

• Comparison of aggregate and per-application bandwidth and packets per seconds;

• QoS metrics such as two-way delay and loss rates;

• Scaling analysis, via Energy multiresolution energy analysis.

To the vast majority of the results, both original and swing traces results were close

to each other. Thus, Swing was able to match aggregate and burstiness metrics, per byte and per

packet, across many timescales.

C.3.2 Harpoon

Harpoon [Sommers e Barford 2004] [Sommers et al. 2004] is a traffic generator

able to generate representative traffic at IP flow level. It can generate TCP and IP with the

same byte, packet, temporal and spatial characteristics measured at routers. Also, Harpoon is

a self-configurable tool, since it automatically extracts parameters from network traces. It esti-

mates some parameters from original traffic trace: file sizes, inter-connection times, source and

destination IP addresses, and the number of active sessions.

As proof of concept [Sommers e Barford 2004], the authors compared statistics

from the original, and harpoon’s generated traces. The two main types of comparisons: diurnal

throughput, and stochastic variable CDF and frequency distributions. Diurnal throughput refers

to the average bandwidth variation within a day period. In a usual network, during the day the

bandwidth consumption is larger than the night. Also, they compared:

• CDF of bytes transferred per 10 minutes

• CDF of packets transferred per 10 minutes

• CDF of inter-connection time

• CDF of file size

• CDF of flow arrivals per 1 hour

• Destination IP address frequency

In the end, they showed the differences in throughput evaluation of a Cisco 6509

switch/router using Harpoon and a constant rate traffic generator. Harpoon was proven able to

give close CDFs, frequency and diurnal throughput plots compared to the original traces. Also,

the results demonstrated that Harpoon provides a more variable load on routers, compared to

constant rate traffic. It indicates the importance of using realistic traffic traces on the evaluation

of equipment and technologies.

Appendix C. Traffic Generators Survey 124

C.3.3 D-ITG

D-ITG [Botta et al. 2012] is a network traffic generator, with many configurable

features. The tool provides a platform that meets many emerging requirements for a realistic

traffic generation. For example, multi-platform, support of many protocols, distributed opera-

tion, sending/receiving flow scalability, generation models, and analytical model based genera-

tion high bit/packet rate. You can see different analytical and models and protocols supported

by D-ITG at Table 14.

To the evaluation of realism on analytical model parameterization of D-ITG, the

authors used a synthetic replication of a eight players’s LAN party of Age of Mythology7. They

have captured traffic flows during the party, then, they modeled its packet size and inter-packet

time distributions. They show that the synthetic traffic and the analytical model have similar

curves of packet size and inter-packet time; thus it can approximate the empirical data. Also,

the bit rate’s mean and the standard deviation of the empirical and synthetic data are similar.

C.3.4 sourcesOnOff

Varet et al. [Varet 2014] create an application implemented in C, called

SourcesOnOff. It models the activity interval of packet trains using probabilistic distributions.

To choose the best stochastic model, the authors had captured traffic traces using TCPdump.

Then the developed tool that could configure out what distribution (Weibull, Pareto, Exponen-

tial, Gaussian, etc.) is better to the original traffic traces. They used the Bayesian Information

Criterion (BIC) for distance assessment and tested the smaller BIC for each distribution, insur-

ing a good correlation between the original and generated traces and self-similarity.

The validation methods used on sourcesOnOff are:

• A visual comparison between On time and Off time of the original trace and the stochastic

fitting;

• QQplots, which aim to evaluate the correlation between inter-trains duration of real and

generated traffic;

• Measurement of the measured throughput’s autocorrelation A of the real and synthetic

traffic;

• Hurst exponent computation of the real and the synthetic trace;

The results pointed to an excellent stochastic fitting, better for On-time values. On

the other hand, the correlation value of the QQplot was more significant on the Off time values

7 https://www.ageofempires.com/games/aom/

Appendix C. Traffic Generators Survey 125

(99.8% versus 97.9%). In the real and synthetic traces, the throughput’s autocorrelation re-

mained between an upper limit of 5%. Finally, the ratio between the evaluated Hurst exponent

always remained smaller than 12%.

C.3.5 MoonGen

MoonGen [Emmerich et al. 2015] is a high-speed scriptable paper capable of sat-

urating 10 GnE link with 64 bytes packets, using a single CPU core. The authors built it over

DPDK and LuaJit, enabling the user to have high flexibility on the crafting of each packet,

through Lua scripts. It has multi-core support and runs on commodity server hardware. Moon-

Gen also can test latency with sub-microsecond precision and accuracy, using hardware times-

tamping of modern NICs cards. The Lua scripting API enable the implementation and high

customization along with high-speed. This includes the controlling of packet sizes and inter-

departure times.

The authors evaluated this traffic generator focused on throughput metrics, rather

than others. Also, they have small packet sizes (64 bytes to 256), since the per-packet costs

dominate. In their work, they were able to surpass 15 Gbit/s with an XL71040GbENIC. Also,

they achieve throughput values close to the line rate with packets of 128 bytes, and 2CPU cores.

C.3.6 LegoTG

Bartlett et al. [Bartlett e Mirkovic 2015] implemented a modular framework for

composing custom traffic generation, called LegoTG. As argued by the authors (and by our

present work), automation of many aspects of traffic generation is a desirable feature. The

process of how to generate proper background traffic may become research by itself. Traffic

generators available today offer a single model and a restricted set of features into a single code

base, makes customization difficult.

The primary purpose of their experiment was to show how LegoTG could generate

background traffic, only. Also, they showed how realistic background traffic could influence

research conclusions. The test chosen is one of the use cases proposed for Swing [Vishwanath e

Vahdat 2008], and evaluated the error on bandwidth estimation of different measurement tools.

It showed that LegoTG could provide a secure and custom traffic generation.

126

D Chapter 4 Aditional Plots

In this appendix, we include some plots generated by the study presented in Chap-

ter 4, which have been cut off and not included in the final text version. They are:

• CDF’s distributions;

• QQPlots;

• Cost history (J∇) and data linearization from linear regression;

• Other plots for AIC, BIC and JM.

Appendix D. Chapter 4 Aditional Plots 130

(a) Chauchy (b) Exponential(LR)

(c) Exponential(Me) (d) Normal

(e) Pareto(LR) (f) Pareto(MLH)

(g) Weibull

Figure 49 – CDF functions for the approximations of lan-gateway-pcap inter packet times, of
many stochastic functions.

Appendix D. Chapter 4 Aditional Plots 131

(a) Chauchy (b) Exponential(LR)

(c) Exponential(Me) (d) Normal

(e) Pareto(LR) (f) Pareto(MLH)

(g) Weibull

Figure 50 – CDF functions for the approximations of lan-diurnal-firewall-pcap inter packet
times, of many stochastic functions.

Appendix D. Chapter 4 Aditional Plots 132

(a) Chauchy (b) Exponential(LR)

(c) Exponential(Me) (d) Normal

(e) Pareto(LR) (f) Pareto(MLH)

(g) Weibull

Figure 51 – CDF functions for the approximations of wan-pcap inter packet times, of many
stochastic functions.

Appendix D. Chapter 4 Aditional Plots 137

We
ibu
ll

No
rm
al

Ex
po
ne
nti
al(
LR
)

Ex
po
ne
nti
al(
Me
)

Pa
ret
o(L
R)

Pa
ret
o(M
LH
)

Ca
uch
y

model

−15

−10

−5

0

5

10

15

(A
ic/
|A
ic|
)*

ln
|A

ic|

AIC and BIC values
skype
lan-gateway
lan-firewall
wan

Figure 56 – AIC and BIC summary for all the traces, presented in log scale.

Cauchy

Exponentia
l(L

R)

Exponentia
l(M

e)

Norm
al

Pareto(LR
)

Pareto(M
LH

)

Weibull
0

1

2

3

4

5

6

7

AI
C

an
d

BI
C

ra
nk

in
g

AIC and BIC position
skype
lan-gateway
lan-firewall
wan

Figure 57 – AIC and BIC summary for all the traces, presenting the order.

Ca
uch

y

Ex
po
ne
nti
al(
LR
)

Ex
po
ne
nti
al(
Me
)

No
rm
al

Pa
ret
o(L
R)

Pa
ret
o(M
LH
)

We
ibu
ll

model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
st
 F
un
ct
io
n

Cost Function Sumary
skype
lan-gateway
lan-firewall
wan

Figure 58 – Cost function JM summary.

141

F Academic contributions

As main academic works, along with this dissertation, we have a set of contribu-

tions:

• Two non-indexed articles, presented on the EADCA Workshop:

– "Towards a Flexible and Extensible Framework for Realistic Traffic Generation on

Emerging Networking Scenarios" [Paschoalon e Rothenberg 2016]

– "Using BIC and AIC for Ethernet traffic model selection. Is it worth?" [Paschoalon

e Rothenberg 2017];

• One Journal Article published 2019 in the IEEE Networking Letters:

– "Automated Selection of Inter-Packet Time Models through Information Criteria"

[Paschoalon e Rothenberg 2019]

• One congress submission:

– "SIMITAR: Realistic and Autoconfigurable Traffic Generation";

• One open-source tool:

– SIMITAR: SniffIng ModellIng and TrAffic geneRation [Paschoalon 2019]

IX Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)

IX DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 29 e 30 de setembro de 2016

Campinas, Brazil, September 29-30, 2016

Towards a Flexible and Extensible Framework for Realistic Traffic

Generation on Emerging Networking Scenarios

Anderson dos Santos Paschoalon , Christian Esteve Rothenberg

Departamento de Engenharia de Computação e Automação Industrial (DCA)

Faculdade de Engenharia Elétrica e de Computação (FEEC)

Universidade Estadual de Campinas (Unicamp)

Caixa Postal 6101, 13083-970 – Campinas, SP, Brasil

{pchoalon ,chesteve}@dca.fee.unicamp.br

Abstract – New emerging technologies have a larger unpredictability, compared to legacy equipment. They

require a larger set of meaningful tests on many different scenarios. But, in the open source world is hard to find

a single tool able to provide realism, speed, easy usage and flexibility at the same time. Most of the tools are

monolithic and devoted to specific purposes. This work presents a flexible and extensible framework which aims

to decouple synthetic traffic modelling from its traffic generator engine. Through a new abstraction layer, it would

become possible to use modern and throughput optimized tools to create realistic traffic, in an automated way. This

enables a platform agnostic configuration and reproduction of complex scenarios via analytical models. Also we use

pcap files and live-capture to create "Compact Trace Descriptors".

Keywords – realistic, framework, traffic generation, modelling, burstiness, fractal, flow level, packet level,

Hurst exponent, wavelet, pcap, emulation, stochastic, inter-departure, packet size, Swing, D-ITG, Harpoon, Swing,

SourcesOnOff, LegoTG, DPDK

1. Introduction

Emerging technologies such as SDN and NFV are

great promises. If succeeding at large-scale, they

should change the development and operation of

computer networks. But, enabling technologies

such as virtualization still pose challenges on perfor-

mance, reliability, and security [6]. Thus, guarantee

the Service Layer Agreements on emerging scenar-

ios is now a harder question. Applications may have

a huge performance degradation processing small

packets [12]. As conclude by many investigations,

realistic and burstiness traffic impacts on bandwidth

measurement accuracy [2]. Also, realistic workload

generators are essential security research [4]. Thus,

there is a demand for tests able to address realism at

high throughput rates.

The open-source community offers a huge

variety of workload generators and benchmarking

tools [4] [9]. Each tool uses different methods

on traffic generation, focusing on a certain aspects.

Some traffic generator tools provide support emula-

tion of single application workloads. But this is not

enough to describe an actual Service Provider(ISP)

load or even a LAN scenario. Other tools work

as packet replay engines, such as TCPreplay and

TCPivo. Although in that way is possible to pro-

duce a realistic workload at high rates, it comes

with some issues. First, the storage space required

becomes huge for long-term and high-speed traffic

capture traces. Also, obtaining good traffic traces

sometimes is hard, due privacy issues and fewer

good sources. Many tools aim the support of a

larger set of protocols and high-performance such

Seagull and Ostinato. Many are also able to control

inter-departure time and packet size using stochas-

tic models, like D-ITG [4] and MoonGen. They

can provide a good control of the traffic, and high

rates. But, in this case, selecting a good configura-

tion is by itself a research project, since how to use

each parameter to simulate a specific scenario is a

hard question [7]. It is a manual process and de-

mands implementation of scripts or programs lever-

aging human (and scarce) expertise on network traf-

fic patterns and experimental evaluation. Some tools

like Swing and Harpoon, try to use the best of both

worlds. Both use capture traces to set intern param-

eters, enabling an easier configuration. Also, Swing

uses complex multi-levels which are able to pro-

vide a high degree of realism [13]. But they have

their issues as well. Harpoon does not configure pa-

rameters at packet level [11] and is not supported

by newer Linux kernels. Swing [13] aims to gen-

erate realistic background traffic, not offering high

throughput [13] [2]. As is possible to see, this a

result of the fact that its traffic generation engine is

coupled to its modeling framework. You can’t opt to

use a newer/faster packet generator. The only way

of replacing the traffic engine is changing and re-

compiling the original code. And this is a hard task.

This project aims to create a framework

able solve many of presented issues. It must be

able to "learning" patterns and characteristics of real

Appendix F. Academic contributions 142

IX Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)

IX DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 29 e 30 de setembro de 2016

Campinas, Brazil, September 29-30, 2016

will use libtins librarie for packet processing. The

criteria to classify the traffic into flows is the same

of SDN switches: internet protocol, source/destina-

tion addresses, transport protocol, and source/des-

tination transport ports. The framework uses an

SQLite database.

The Trace Analyzer is the core of the

project. It is the tool responsible for characterizing

the trace. Using the stored information, breaks the

trace into flows, and parametrize each of them. The

parameters are header fields and stochastic function-

s/coefficients for each flow. The component models

the behaviour of the trace on flow level and packet

level. At the packet level, is possible to model

the packet-size and the inter-departure time, during

packet bursts (ON times). At the flow level, is pos-

sible to control bursts periods, session length, and

the number of bytes delivered. We will use likeli-

hood criterions to choose the best probabilistic func-

tion and parameters. Options are the smaller error,

Akaike information criterion, and Bayesian infor-

mation criterion [1]. It will sort the parametrized

functions in a priority list. After the parametriza-

tion, the Trace Analyzer records these features in a

machine-readable file (XML, JSON) called "Com-

pact trace descriptor".

Figure 2. Hurst exponent value of original and

synthetic traces

The Flow Generator pick these abstract pa-

rameters and feed an Ethernet workload generator

tool. It crafts each flow in an independent way,

in a different thread. The presented prototype just

uses the D-ITG API as workload tool. But it can

use any packet-level traffic generator with API or

CLI. This component handles the flow level models

and parametrizes the packet-level tool underneath.

Since each packet-level tool supports a different set

of stochastic functions, the Flow Generator should

pick the first compatible model from the priority

list. But prototype presented here still uses simple

models on packet and flow crafting, supporting just

constant distributions. But the next release should

support at packet-level heavy-tailed [1] and Poison

functions for the inter-departure times, and bimodal

distributions [5] [10] for the packet size. At the

flow level, two different alternatives can be used.

Model file transference and session, such as in Har-

poon [11]; or use an envelope process, as suggested

by Melo et al [8].

4. Partial results

To as proof of concept, we propose a set of tests.

We choose them, based on tests used to ensure re-

alism, on related many works [1] [13] [2]. They

aim to ensure realism and similarity. Realism tests

measure if a synthetic traffic has expected features

of an Ethernet capture. Similarity tests measures if

the generated traffic represents specific characteris-

tics of the original one. Here, due the limited space,

we will present just two results. The first, which test

realism, is the Hurst exponent evaluation. It is able

to test the self-similarity of the generated traffic. To

be self-similar, a process must have a Hurst expo-

nent between 0.5 and 1 [7]. Also, usual values of

Ethernet traffic lay between 0.8 and 0.9 [7].

Thus a realistic Ethernet traffic must have a

Hurst exponent close to the last interval. The second

test is Wavelet Multiresolution Energy Analysis. It

is able to capture characteristics of the traffic at dif-

ferent time-scales. For example, it enables visual-

ization of a periodic tendency(decrease) or a self-

similar tendency(increase) at a certain time scale.

Also, at each point, it represents the mean energy

of that signal at that time scale. So, similar Ethernet

traffics must have slopes at close time-scales. Also,

they must have close energy scales. More close are

the curves, more similar are the traces.

The evaluated prototype support just con-

stant functions. It selects the inter-departure time

equal to the mean. The packet size is set as the most

frequent value. The flow’s start time and duration

are the same from the observed traffic. We capture

the original traffic trace on the laboratory LAN. The

results are at figures 2 and 3. On both analysis,

the generation of the synthetic trace was repeated

30 times. The keys which serves as input to D-ITG

were randomly selected. At is possible to see that

the on both cases the Hurst exponent converge to

Appendix F. Academic contributions 144

IX Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)

IX DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 29 e 30 de setembro de 2016

Campinas, Brazil, September 29-30, 2016

the same value, close to 0.9. But, on the wavelet

multiresolution analysis, both curves still different

behaviours.

Figure 3. Wavelet Multiresolution Energy Anal-

ysis of the original and synthetic traces

5. Conclusion and future work

The framework prototype was already able to gen-

erate a realistic (self-similar) Ethernet traffic. But,

as expected, is still unable to represent well the par-

ticular features of the original traffic trace. This is

a result of the, still, poor stochastic modelling. The

next job will be implementing a significative mod-

elling of the original traffic trace, through the spec-

ified methodology. We expect more significant re-

sults, them. Also, we will expand the framework

to others workload platforms and compare the re-

sults. Packet acceleration could speed-up the per-

formance, which may enable the reproduction of

high-throughput traces. This can be implemented

using DPDK. Finally, the results should be com-

pared to Swing, on realism, similarity, and perfor-

mance. This will give a measurement of how good

is the framework, compared with others alternatives,

and its strong and weak points.

References

[1] Nicolas Larrieu Antoine Varet. Realistic net-

work traffic profile generation: Theory and

practice. Computer and Information Science,

7(2), 2014.

[2] G. Bartlett and J. Mirkovic. Expressing dif-

ferent traffic models using the legotg frame-

work. In 2015 IEEE 35th International Con-

ference on Distributed Computing Systems

Workshops, pages 56–63, June 2015.

[3] A. Botta, A. Dainotti, and A. Pescape. Do you

trust your software-based traffic generator?

IEEE Communications Magazine, 48(9):158–

165, Sept 2010.

[4] Alessio Botta, Alberto Dainotti, and Antonio

Pescapé. A tool for the generation of realis-

tic network workload for emerging networking

scenarios. Computer Networks, 56(15):3531 –

3547, 2012.

[5] Ewerton Castro, Ajey Kumar, Marcelo S.

Alencar, and Iguatemi E.Fonseca. A packet

distribution traffic model for computer net-

works. In Proceedings of the International

Telecommunications Symposium – ITS2010,

September 2010.

[6] Bo Han, V. Gopalakrishnan, Lusheng Ji, and

Seungjoon Lee. Network function virtualiza-

tion: Challenges and opportunities for inno-

vations. Communications Magazine, IEEE,

53(2):90–97, Feb 2015.

[7] W. E. Leland, M. S. Taqqu, W. Willinger, and

D. V. Wilson. On the self-similar nature of eth-

ernet traffic (extended version). IEEE/ACM

Transactions on Networking, 2(1):1–15, Feb

1994.

[8] Cesar A.V. Melo and Nelson L.S. da Fon-

seca. Envelope process and computation of

the equivalent bandwidth of multifractal flows.

Computer Networks, 48(3):351 – 375, 2005.

Long Range Dependent Traffic.

[9] S. Molnár, P. Megyesi, and G. Szabó. How

to validate traffic generators? In 2013

IEEE International Conference on Communi-

cations Workshops (ICC), pages 1340–1344,

June 2013.

[10] L. O. Ostrowsky, N. L. S. da Fonseca, and

C. A. V. Melo. A traffic model for udp flows.

In 2007 IEEE International Conference on

Communications, pages 217–222, June 2007.

[11] Joel Sommers, Hyungsuk Kim, and Paul Bar-

ford. Harpoon: A flow-level traffic gen-

erator for router and network tests. SIG-

METRICS Perform. Eval. Rev., 32(1):392–

392, June 2004.

[12] S. Srivastava, S. Anmulwar, A. M. Sapkal,

T. Batra, A. K. Gupta, and V. Kumar. Compar-

ative study of various traffic generator tools.

In Engineering and Computational Sciences

(RAECS), 2014 Recent Advances in, pages 1–

6, March 2014.

[13] K. V. Vishwanath and A. Vahdat. Swing: Re-

alistic and responsive network traffic genera-

tion. IEEE/ACM Transactions on Networking,

17(3):712–725, June 2009.

Appendix F. Academic contributions 145

X Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)

X DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 26 e 27 de outubro de 2017

Campinas, Brazil, October 26-27, 2017

Using BIC and AIC for Ethernet traffic model selection. Is it worth?

Anderson dos Santos Paschoalon , Christian Esteve Rothenberg

Departamento de Engenharia de Computação e Automação Industrial (DCA)

Faculdade de Engenharia Elétrica e de Computação (FEEC)

Universidade Estadual de Campinas (Unicamp)

Caixa Postal 6101, 13083-970 – Campinas, SP, Brasil

{apaschoalon,chesteve}@dca.fee.unicamp.br

Abstract – In this work, we aim to evaluate how good are the information criteria AIC and BIC inferring which

is the best stochastic process to describe Ethernet inter-packet times. Also, we check if there is a practical difference

between using AIC or BIC. We use a set of stochastic distributions to represent inter-packet of a traffic trace and cal-

culate AIC and BIC. To test the quality of BIC and AIC guesses, we define a cost function based on the comparison

of significant stochastic properties for internet traffic modeling, such as correlation, fractal-level and mean. Then,

we compare both results. In this short paper, we present just the results of a public free Skype-application packet

capture, but we provide as reference further analyzes on different traffic traces. We conclude that for most cases AIC

and BIC can guess right the best fitting according to the standards of Ethernet traffic modeling.

Keywords – BIC, AIC, stochastic function, inter-packet times, correlation, Hurst exponent, heavy-tailed distribu-

tion, fractal-level, burstiness, linear-regression, weibull, pareto, exponential, normal, poison, maximum likelihood,

Ethernet traffic, traffic modeling, fractal-level, pcap file, Skype traffic

1. Introduction

There are many works devoted to studying the na-

ture of the Ethernet traffic [1]. Classic Ethernet

models use Poisson related processes. Initially, it

makes sense since a Poisson-related process repre-

sents the probability of events occur in many inde-

pendent sources with a known average rate, and in-

dependently of the last occurrence [1] [2]. However

studies made by Leland et al. [1] showed that the

Ethernet traffic has a self-similar and fractal nature.

Even if they can represent the randomness of an Eth-

ernet traffic, simple Poisson processes can’t express

traffic "burstiness" in a long-term time scale, such as

traffic "spikes" on long-range ripples. These char-

acteristics are an indication of the fractal and self-

similar nature of the traffic that usually we express

by distributions with infinite variance, called heavy-

tailed. Heavy-tail means its distribution is not expo-

nentially bounded[3], such as Weibull, Pareto and

Cauchy distribution. Heavy-tailed processes may

guarantee self-similarity, but not necessarily will en-

sure other important features like high correlation

between data and same mean packet rate.

Many investigations were made on the

literature about the nature of the Internet traf-

fic [1][4][5][6][7], and many others on the mod-

eling of stochastic functions for specific scenar-

ios [8][9][10][11][12][9]. However, there are some

limitations on this idea of finding a single model.

Usually, not the same stochastic distribution will

present a proper fitting for all possible kinds of

traces [3]. Depending on some variables, such as the
capture time, the number of packets or type of traf-

fic, different functions may fit better the available

data. On most works the best model representation

for an Ethernet traffic is not chosen analytically but

based on the researcher own data analyses and pur-

poses [13][11][12]. Also, some methods like linear

regression may diverge sometimes. Furthermore, it

has already been proven that a single model cannot

represent arbitrary traffic traces [3].

In this work we test the use of informa-

tion criteria BIC (Bayesian information criterion)

and AIC (Akaike information criterion) as tool for

choosing the best fitting for inter-packet times of

a traffic trace. It is an analytical method which

spares and avoid human analyzes, is easy to be im-

plemented by software, and don’t relies on simula-

tions and generation of random data. We fit a set of

stochastic models through different methods and ap-

plying BIC and AIC to choose the best. On this ar-

ticle, we analyze the results of inter-packet time fit-

ting for one public available trace we call as skype-

pcap1.

First, we explain the mathematical meaning

of BIC and AIC and state the methods we are go-

ing to use to create a set of candidate models for our

dataset. Then we define our cross-validation method

based on a cost function J , attributing weights

from the best to the worst representation for each

properties using randomly generated data with our

stochastic fittings, we can choose the best possible

1It is a lightweight Skype capture, available at

https://wiki.wireshark.org/SampleCaptures, named

SkypeIRC.cap

Appendix F. Academic contributions 146

X Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)

X DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 26 e 27 de outubro de 2017

Campinas, Brazil, October 26-27, 2017

traffic model among these fittings. Thus we com-

pare the results achieved by AIC/BIC and our cost

function. Showing that BIC and AIC are good at

guessing the model with smaller J values. Also, we

found that for traffic inter-packet times, that the dif-

ference between BIC and AIC values is minimal. So

choosing one over the other do not seem to be a key

question.

2. AIC and BIC

Suppose that we have an statistical model M of

some dataset x = {x1, ..., xn}, with n independent

and identically distributed observations of a random

variable X . This model can be expressed by a prob-

ability density function (PDF) f(x|θ), where θ is a

vector of parameter of the PDF, θ ∈ R
k (k is the

number of parameters). The likelihood function of

this model M is given by:

L(θ|x) = f(x1|θ)·...·f(xn|θ) =

n∏

i=1

f(xi|θ) (1)

Now, suppose we are trying to estimate the best sta-

tistical model, from a set M1, ...,Mn, each one with

an estimated vector of parameters θ̂1, ..., θ̂n. AIC

and BIC are defined by:

AIC = 2k − ln(L(θ̂|x)) (2)

BIC = k ln(n)− ln(L(θ̂|x)) (3)

In both cases, the preferred model Mi, is the one

with the smaller value of AICi or BICi.

3. Methodology

We collect inter-packet times from the traffic cap-

ture we call skype-pcap. Then, we estimate a

set of parameters for stochastic processes, using

a set of different methodologies, including linear-

regression, maximum likelihood, and direct estima-

tion. We are modeling:

• Weibull, exponential, Pareto and Cauchy

distributions, using linear regression,

through the Gradient descendent algorithm.

We refer to these exponential and Pareto

approximations as Exponential(LR) and

Pareto(LR);

• Normal and exponential distribution, using

direct estimation the mean and the standard

deviation of the dataset for the normal, and

the mean for the exponential. We refer for

to this exponential approximation as Expo-

nential(Me) ;
• Pareto distribution, using the maximum

likelihood method. We refer to this distri-

bution as Pareto(MLH);

Then, from these parametrized models, we

estimate which one best represent our dataset, us-

ing AIC and BIC criteria. These results were ob-

tained using Octave language2, and the scripts are

available at [14] for reproduction purposes. Thus,

to see if our criterion of parameter selection can find

which is the best model according to traffic model-

ing standards on realism and benchmarking[15], we

define a validation methodology. We randomly gen-

erated a dataset using our parameterized stochastic

processes. Then we compare it with the original and

synthetic sample, trough three different metrics, all

with a confidence interval of 95%:

• Correlation between the sample data and

the estimated model (Pearson’s product-

moment coefficient);

• Difference between the original and the

synthetic Hurst exponent;

• Difference between the original and the

synthetic mean inter-packet time;

The Pearson’s product-moment coefficient,

or simply correlation coefficient, is an expression of

the linear dependence or association between two

datasets. To estimate it, we use the Octave’s func-

tion corr(). The Hurst exponent is meter self-

similarity and indicates the fractal level of the inter-

packet times. To estimate this value we use the func-

tion hurst() from Octave, which uses rescaled

range method. Finally, the mean is also relevant,

since it will meters if the packet rate of the approxi-

mation and the original trace are close to each other.

To measure if AIC and BIC are suitable

criteria for model selection for inter-packet times,

we define a cost function based on the correlation,

Hurst exponent and mean. We define Cr as the

vector of correlations of the models ordered from

the greater to the smaller. Also, let the vectors Me

and Hr be the absolute difference (modulus of the

difference) between the estimated models and the

original datasets of the mean and the Hust expo-

nent respectively. We order both from the smaller

2 https://www.gnu.org/software/octave/

Appendix F. Academic contributions 147

X Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA)

X DCA/FEEC/University of Campinas (UNICAMP) Workshop (EADCA)

Campinas, 26 e 27 de outubro de 2017

Campinas, Brazil, October 26-27, 2017

BIC and the cost function were able to pick the first

models in the same order. Therefore, analytically

with BIC and AIC, we were able to achieve the

same results as pointed by our simulations. Even if

AIC and BIC mathematical definitions are unaware

of the specific requirements of Ethernet traffic mod-

eling, such as same fractal-level and close packet

per second rate, they still can point the best choices

according to these constraints. In this work, we an-

alyze just inter-packet times of a single trace. How-

ever at [14] we perform the same methodology on

different types of traffic captures, finding similar re-

sults. Therefore, we can conclude that BIC and AIC

are healthy alternatives for model selection of Eth-

ernet inter-packet times models and we can safely

use them. Finally, we must point some advantages

of BIC and AIC instead of simulations. Since it is

an analytical model, no generation of random data is

necessary, being computationally cheaper and easy

to code. Also, since we do not use a single stochas-

tic function and parameterization strategy, it is re-

silient to the fact that some methods like linear-

regression over Weibull may diverge sometimes. If

it happens, BIC or AIC will discard this guesses,

and choose another one automatically. Last but not

least, to the best of our knowledge, this is the most

comprehensive investigation of the actual quality of

BIC and AIC as model selection criteria of for inter-

packet times.

References

[1] W. E. Leland, M. S. Taqqu, W. Willinger, and

D. V. Wilson. On the self-similar nature of eth-

ernet traffic (extended version). IEEE/ACM

Transactions on Networking, 2(1):1–15, Feb

1994.

[2] Frank A. Haight. Handbook of the Poisson

Distribution. John Wiley & Son, New York,

1967.

[3] Nicolas Larrieu Antoine Varet. Realistic net-

work traffic profile generation: Theory and

practice. Computer and Information Science,

7(2), 2014.

[4] F. Ju, J. Yang, and H. Liu. Analysis of

self-similar traffic based on the on/off model.

In 2009 International Workshop on Chaos-

Fractals Theories and Applications, pages

301–304, Nov 2009.

[5] Zhao Rongcai and Zhang Shuo. Network traf-

fic generation: A combination of stochastic

and self-similar. In Advanced Computer Con-
trol (ICACC), 2010 2nd International Confer-

ence on, volume 2, pages 171–175, March

2010.

[6] W. Willinger, M. S. Taqqu, R. Sherman, and

D. V. Wilson. Self-similarity through high-

variability: statistical analysis of ethernet lan

traffic at the source level. IEEE/ACM Trans-

actions on Networking, 5(1):71–86, Feb 1997.

[7] Ibrahim Cevizci, Melike Erol, and Sema F.

Oktug. Analysis of multi-player online game

traffic based on self-similarity. In Proceedings

of 5th ACM SIGCOMM Workshop on Network

and System Support for Games, NetGames

’06, New York, NY, USA, 2006. ACM.

[8] N. M. Markovitch and U. R. Krieger. Estima-

tion of the renewal function by empirical data-

a bayesian approach. In Universal Multiser-

vice Networks, 2000. ECUMN 2000. 1st Euro-

pean Conference on, pages 293–300, 2000.

[9] A. J. Field, U. Harder, and P. G. Harrison.

Measurement and modelling of self-similar

traffic in computer networks. IEE Proceed-

ings - Communications, 151(4):355–363, Aug

2004.

[10] T. Kushida and Y. Shibata. Empirical study

of inter-arrival packet times and packet losses.

In Proceedings 22nd International Confer-

ence on Distributed Computing Systems Work-

shops, pages 233–238, 2002.

[11] P. M. Fiorini. On modeling concurrent

heavy-tailed network traffic sources and its

impact upon qos. In 1999 IEEE Interna-

tional Conference on Communications (Cat.

No. 99CH36311), volume 2, pages 716–720

vol.2, 1999.

[12] F. D. Kronewitter. Optimal scheduling of

heavy tailed traffic via shape parameter esti-

mation. In MILCOM 2006 - 2006 IEEE Mil-

itary Communications conference, pages 1–6,

Oct 2006.

[13] S. D. Kleban and S. H. Clearwater. Hierar-

chical dynamics, interarrival times, and perfor-

mance. In Supercomputing, 2003 ACM/IEEE

Conference, pages 28–28, Nov 2003.

[14] Projeto mestrado.

https://github.com/AndersonPaschoalon/

ProjetoMestrado, 1234. [Online; accessed

May 30th, 2017].

[15] Sandor Molnar, Peter Megyesi, and Geza Sz-

abo. How to validate traffic generators? In

2013 IEEE International Conference on Com-

munications Workshops (ICC), pages 1340–

1344, June 2013.

Appendix F. Academic contributions 149

Automated Selection of Inter-Packet Time Models

through Information Criteria

Anderson dos Santos Paschoalon and Christian Esteve Rothenberg

School of Electrical and Computer Engineering (FEEC)

University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil

Email: anderson.paschoalon,chesteve@dca.fee.unicamp.br

Abstract—A well-known problem of network traffic repre-
sentation over time is that there is no “one-fits-all” model.
The selection of the “best” model is traditionally made in a
time-consuming and ad-hoc manner by human experts. In this
work, we evaluate the feasibility of using Bayesian Information
Criterion (BIC) and Akaike Information Criterion (AIC) as tools
for automated selection of the best-fit stochastic process for inter-
packet times. We propose and validate a methodology based on
Information Criteria, resulting in an automated and accurate
approach for such traffic modelling tasks.

Index Terms—BIC, AIC, stochastic function, inter-packet
times, Hurst exponent.

I. INTRODUCTION

Traffic identification [1] and generator tools [2] [3] rely

on a set of pre-defined stochastic models to set the packet

classification/generation rules by configuring packet bursts and

inter-packet times. Studies show that realistic network traffic

provides different and more variable load characteristics on

routers [4], even for the same average bandwidth. Bursty traffic

can cause more packet buffer overflows on a given network

[5], resulting in higher network performance degradation than

under constant-rate traffic [4].

Many efforts have been devoted to understanding the traffic

nature, which has been proved to be self-similar and fractal

[6] [7]. Classical network traffic models based on Poisson

related processes cannot express well this type of scenarios.

Therefore, research has been devoted to processes with high-

variability [8]. For example, the use of heavy-tailed stochastic

processes, such as Weibull, Pareto, and Cauchy, have non-

exponentially bounded distributions [3] and can guarantee

self-similarity via Joseph and Noah effects [8]. However,

they do not necessarily ensure correlation on other quality

measures between the model and the actual traffic, such as

the average packet rate [9]. There are works that advocate for

the use of Cauchy [5], Weibull [10], Bivariate gamma [11],

and Moravian-related process [12], just to cite some.

While there is an extensive amount of study-cases on

network traffic modeling, there is a gap of suitable generic

methods for automating the choice of the “best” model. Spe-

cific models valid for some research studies do not guarantee

that the same model will apply for new cases. Investigations

point to the opposite direction: a change in the scenario can

change the best model as well [5] [10]. Since no “one-fits-

all” model is viable, the status quo of traffic modeling is

to be done on an ad-hoc manner by human specialists [13].

Another option would be to simulate all outputs a given set of

random processes and choose the model that best fits the data.

However, this task turns into a research project itself, involving

definition of metrics, random-data generation, cross-validation

methods, repetitions to guarantee high confidence intervals,

and so on. Therefore, such an approach is not practical if that

is not the primary research target.

In this work, we propose and evaluate the use of the

Information Criteria (IC), more specifically BIC (Bayesian

Information Criterion) and AIC (Akaike Information Crite-

rion) [14], as suitable methods for automated model selection

for network traffic inter-packet times. Being analytic and

deterministic methods which spare model designer humans in

the loop, they are also simple to implement and do not rely

on hypothesis testing. In addition, We define a cross-validation

method based on a cost function J , which acts as an aggregator

of traditional and key metrics used for validation of stochastic

models and traffic samples. J assigns weights from the best to

the worst representation for each property of each trace model

by using randomly generated data with our stochastic fittings.

Through this process, we choose the best-fitted traffic model

under evaluation. Afterward, we compare the results achieved

by AIC/BIC and our cost function. Given the aforementioned

approach, we show that AIC/BIC methods provide an accurate

stochastic process selection strategy for inter-packet times

models. Some marginal caveats include limiting our work to

independent, and identical distributed random variables, since

they are commonly used to describe network traffic [5] and are

widely supported in traffic generators [2]. Information criteria

on more complex models such as Markov-chain and envelope

processes [15] have been left for future work.

II. A PRIMER ON BIC AND AIC

Let M represent a statistical model of some dataset

x = {x1, ..., xn}, with n independent and identically dis-

tributed observations of a random variable X . This model can

be expressed by a probability density function (PDF) f(x|θ),
where θ is a vector of the PDF’s parameters, θ ∈ R

k (k is

the θ’s dimension). The likelihood function of this model M

is given by [14]:

L(θ|x) = f(x1|θ) · ... · f(xn|θ) =

n∏

i=1

f(xi|θ) (1)

Appendix F. Academic contributions 150

The goal is to estimate the best statistical model, from the

set {M1, ...,Mn}, where each one has an estimated vector of

parameters θ̂1, ..., θ̂n. AIC and BIC are defined by:

AIC = 2k − 2 ln(L(θ̂|x)) (2)

BIC = k ln(n)− 2 ln(L(θ̂|x)) (3)

In both cases, the preferred model Mi, is the one with the

smaller value of AICi or BICi.

III. METHODOLOGY

We used four packet captures (pcaps) to extract inter-packet

times we used in this work, where three of them are publicly

available. The first one is a Skype packet capture1, which we

name skype-pcap. The second one is a CAIDA capture2, from

which we use its first capture second3, referred to as wan-pcap.

The third one is a capture of a busy private network Internet

access point4, which is referred as lan-gateway-pcap. Finally,

we capture the last traffic trace at our INTRIG/UNICAMP

laboratory LAN through a period of one hour on a firewall

gateway. We call it lan-firewall-pcap. All the developed scripts

and data sets are publically available [16], for reproducibility

purposes. The results were obtained using the Octave tool.5 We

retrieved inter-packet times from the traffic traces and divided

them into two equally sized datasets. to avoid data over-fitting,

we use odd-indexed elements as training dataset, and even-

indexed as cross-validation dataset. We then apply the training

dataset on several techniques for model estimation:

• Weibull, exponential, Pareto and Cauchy distributions:

We use linear regression through the Gradient descendent

algorithm. Also, we refer to these exponential and Pareto

approximations as Exponential (LR) and Pareto (LR);

• Normal and exponential distributions: We approximate

the mean and variance by the average and standard

deviation on the normal, and the rate by the inverse of the

average on the exponential, we refer as Exponential (Me);

• Pareto distribution: We use the maximum likelihood

method, which we refer to as Pareto (MLH);

Given the seven models (hypothesis) above, we then com-

pute a quality ranking to evaluate AIC and BIC using the

cross-validation dataset. To validate the information criteria

effectiveness, we develop a weight system based on traditional

methodologies for model quality verification and synthetic

traffic validation [9] [6]. First, we randomly generate datasets

following each stochastic processes hypothesis resulting in the

synthetic inter-packet times, which are then compared with the

cross-validation dataset based on the following metrics:

1Available at https://wiki.wireshark.org/SampleCaptures, named
SkypeIRC.cap

2http://www.caida.org/home/
3Available at https://data.caida.org/datasets/passive-2016/equinix-chicago/

20160121-130000.UTC, named as equinix-chicago.dirB.20160121-

135641.UTC.anon.pcap.gz
4Available at http://tcpreplay.appneta.com/wiki/captures.html named

bigFlows.pcap
5https://www.gnu.org/software/octave/

• The Pearson’s product-moment coefficient between the

sample data and the estimated model. The closer to one,

the better;

• Hurst exponent estimation, via range re-scaling. The

closer to the cross-validation Hurst value, the better;

• Average inter-packet time. The closer to the cross-

validation dataset average, the better.

We choose these metrics according to traffic standards on

realism and benchmarking [9]. The “Pearsons product-moment

coefficient” is a measure of the correlation6 between datasets.

The Hurst exponent is a measure of self-similarity [6]7 and

indicates the fractal level of the distribution of inter-packet

times within a trace. Finally, a trace’s average inter-packet

time is inversely proportional to its packet rate. The closer

the model’s average inter-packet is to the original, the closer

will also be its packet rate and throughput [9]. We consolidate

all these metrics in a best-effort weight system, we call cost

function J . Let Cr be the array of correlations between

the randomly generated data and the cross-validation dataset,

sorted from the better (greater) to the worst (smaller). Let

Me and Hr be defined as vectors of absolute difference of

the mean and Hurst exponent between the synthetic and the

cross-validation dataset. These vectors are sorted: the lower

the differences, the better the model hypothesis represents

the same cross-validation measured metric (throughput and

fractal-level). Letting φ(V,M) be an operator giving the

position (starting from 0) of a model M in a vector V , we

define the cost function J as:

J(M) = φ(Cr,M) + φ(Me,M) + φ(Hr,M) (4)

To illustrate an example application, suppose a model m1

with the best correlation, second and third smaller values of

Hr and Me, respectively, would result in: J(m1) = 0+1+2 =
3. Therefore, the smaller J , the better the model to represent

a wide range of different metrics, since it consolidates many

widely adopted metrics [9] in a single value or ranking. The

estimation of these values was repeated 30 times, with a

confidence interval of 95%, small enough to not interfere

with the results. If the information criteria and J returns

related results, this is interpreted as a strong indication of the

reliability and robustness of AIC and BIC.

IV. RESULTS

Table I summarizes the estimates obtained for AIC, BIC,

and the stochastic process estimated parameters for all pcap

traces. Each model order is graphically presented in Figure

1. For all pcap experiments, we verify that the difference

between BIC and AIC for a given function is always smaller

than its value among different distributions. As shown in the

table I, AIC and BIC criteria always pointed to the same

model ordering. Table II presents the percentage difference

between the obtained values. We verify that their values tend

to converge when the dataset increases.

6Octave’s function corr()
7Octave’s function hurst(), which uses the re-scaled range method.

Appendix F. Academic contributions 151

SIMITAR: Realistic and Auto-configurable

Traffic Generation

Anderson dos Santos Paschoalon

School of Electrical and Computer Engineering (FEEC)

University of Campinas (UNICAMP)

Campinas, Brazil

anderson.paschoalon@dca.fee.unicamp.br

Christian Esteve Rothenberg

School of Electrical and Computer Engineering (FEEC)

University of Campinas (UNICAMP)

Campinas, Brazil

chesteve@dca.fee.unicamp.br

Abstract—Evolving network technologies keep imposing chal-
lenges on the validation and performance evaluation processes.
For instance, the amount and characteristics of flows impact
the performance of SDN switches and controllers. Virtualiza-
tion technologies, such as NFV, are harder to predict and to
guarantee performance compared to hardware-based devices.
IoT introduces new traffic patterns, such as machine-to-machine
traffic and protocols adapted to resource-constrained scenarios,
which will coexist with traditional traffic. Along with all these
changes, in practice, real traffic behaves differently compared to
constant-rate traffic, commonly used by typical benchmarking
and experimental validations. The type of traffic matters. Bursty
traffic may cause buffer overflows while constant traffic does
not. Most of the tools for traffic generation offer a large set of
options to be configured but are not auto-configurable, leaving
the user in charge of the creation, parameterization, validation,
and implementation of the traffic model. The production of actual
realistic traffic is a challenging project by itself. In addition, the
majority of open-source tools have the modeling layer coupled
to the traffic generator. This paper presents our proposed tool
called SIMITAR, an auto-configurable, realistic, and extensible
traffic generator motivated by the needs of evolving networking
environments such as NFV, SDN, and IoT

Index Terms—Sniffing, traffic modelling, BIC, AIC, inter-
packet times, Wavelet scalling, traffic generator, Burstiness, pcap
file, linear regression, Iperf

I. INTRODUCTION

The type of traffic used for performing evaluation matters;

this is a fact. Studies show that realistic Ethernet traffic pro-

vides different and variable load characteristics on routers [1],

even with the same average bandwidth consumption, showing

that constant traffic is not sufficient for complete technology

validation. This conclusion indicates that tests which employ

traffic generators with constant rates are not enough for

complete validation of new technologies. Bursty traffic can

cause packet losses and buffer overflows, impacting network

performance and measurement accuracy [2]. Small packets

tend to degrade application performance [3]. Furthermore,

realistic traffic is essential on security research, such as for

the evaluation of firewall middleboxes, studies on intrusion,

and malicious workloads [4].

New networking scenarios such as SDN and virtualized

networks (NFV and VNFs) become harder to predict in terms

of performance compared to hardware-based technologies, due

to the multiple layers of software and platform parameters

demanding validation in a broadening range of use cases [5].

In addition, new types of traffic patterns introduced by IoT and

Machine-to-Machine communication [6] increase the com-

plexity of the network traffic characterization, turning pre-

defined models used by traffic generators obsolete.

Aiming at addressing these gaps, this paper introduces

SIMITAR, an auto-configurable network traffic generator.

SIMITAR stands for SnIffing, ModellIng, and TrAffic gen-

eRation, which correspond to the main operation processes

of the proposed framework. SIMITAR has an application

independent traffic model, that can represent a wide variety of

scenarios. It also decouples the traffic modeling and packet-

generation layer, using a factory design pattern, enabling its

application on different scenarios, and technology update,

via technology abstraction. SIMITAR code and all scripts

used in this paper are available at GitHub [7] for validation,

experiment reproducibility, and re-use purposes.

II. RELATED WORK

Traffic generators are tools to transfer or inject network

packets in a controlled manner, aiming not at the actual data

transfer data but at the functional validation and performance

benchmarking of devices under test (DUT) for varying tech-

nologies or scenarios. The open-source community offers a

vast variety of traffic generators. Since most have been built

for specific goals, each uses different methods for traffic

generation, and offer control over different traffic features,

such as throughput, packet-sizes, protocols, and so on [4].

Traffic generators can be classified into two main groups:

replay engines [10] and model-based tools. Replay engines,

such as Tcpreplay and TCPivo [11], work replicating in a

given network interface a given packet capture file. These tools

can generate realistic traffic but have their constraints. They

are deterministic since will always reproduce the same traffic

from the packet capture. Replay engines require storage of

packet capture, what can be a problem for traffics of high

bandwidth traffic. Also, they assume the user has access to

packet captures appropriate for his testing purposes, which is

not always true, due to a limited number of public sources.

Model-based tools rely on software models to replicate one

or more characteristics of the traffic. Following the taxonomy

presented by Botta et al. [12]:

Appendix F. Academic contributions 154

the synthetic traces behaving closer to a white-noise shape.

After the time scales 5 and 6 (300-600 milliseconds) scale, the

error between the curves becomes almost negligible. We also

observe a periodicity pattern at the time-scale of 9 seconds.

Vishwanath and Vahdat [8] measured the same periodicity

pattern; which appears to be an intrinsic characteristic of TCP

traffic. We observe some periodicity at 11 and 13 time-scales

(20 and 80 seconds).

In the second case (Fig. 6b), on a tree topology on small

time scales, we identify behavior closer to white-noise on

small scales, and similar results, but with more substantial

energy levels on greater time scales. The diversity introduced

by the topology and the concurrent signaling traffic caused by

the other hosts and switches do explain the observed behavior

since node signaling tends to be more randomized than user-

generated traffic. Indeed, as we can see in Table II, there are

two hundred more packets captured on the client interface in

the tree topology compared to the one-hop scenario.

In the last two plots (Figures 6c and 6d), where we

use libtins as the packet crafter, the energy level is higher,

and the curves are less correlated. SIMITAR, in the current

implementation, is not modeling inter-packet with libtins and

sends packets as fast as possible, which explains this discrep-

ancy. However, in the last scenario, due to the higher average

throughput, the observed performance was better.

V. FUTURE WORK

There is a large room for new features and improvements

to the SIMITAR project, which we are using on a number of

active research projects. In the current model of traffic gen-

eration, we use a set of constants. Calibrating these constants

may improve the realism and quality of the synthetic traffic

outcomes. Also, a smarter flow scheduler that instantiates flow

threads on demand would likely reduce overheads, yielding

more realism under higher throughput rates. Our implemen-

tation for libtins was minimalistic and did not use many of

the features we model. With a more complete implementa-

tion, we should achieve better results. Another extension we

plan to develop is a metering component, to measure QoS

features counting delivered and received packets, and thereby

perform passive bandwidths measurements. Finally, we plan

to leverage the extensibility of our tool to generate traffic of

additional scenarios such as WANs (using DPDK), ZigBee,

and WiFi [16].

VI. CONCLUSIONS

We present SIMITAR as a tool and methodology to at-

tend the evolving needs of rich and realistic network traffic

experiments working at both flow- and packet-level. At the

flow-level, our methodology already achieves high fidelity

results. The cumulative distribution of flows is almost identical

in each case. From the perspective of benchmarking of a

middle-boxes or SDN switches, this is a valuable result,

since their performance, especially in SW implementations,

largely depend on the number and characteristics of the stimuli

flows. However, because of packets exchanged by background

signaling connections, the traffic generated by Iperf, even

following the same cumulative flow distribution, ended up

creating more streams then expected. At the packet level, the

current results with Iperf replicate with high accuracy the

scaling characteristics of the first traffic, and the number of

generated packets are not far than the expected. Despite all

identified optimizations, the results are more than satisfactory

and prove the potential of the proposed methodology. At the

flow-level, our results are at least as good as those achieved

by best-of-breed related work like Harpoon and Swing.

REFERENCES

[1] J. Sommers and P. Barford, “Self-configuring network traffic
generation,” in Proceedings of the 4th ACM SIGCOMM

Conference on Internet Measurement, ser. IMC ’04. New
York, NY, USA: ACM, 2004, pp. 68–81. [Online]. Available:
http://doi.acm.org/10.1145/1028788.1028798

[2] Y. Cai, Y. Liu, W. Gong, and T. Wolf, “Impact of arrival burstiness on
queue length: An infinitesimal perturbation analysis,” in Proceedings of

the 48h IEEE Conference on Decision and Control (CDC) held jointly

with 2009 28th Chinese Control Conference, Dec 2009, pp. 7068–7073.
[3] S. Srivastava, S. Anmulwar, A. M. Sapkal, T. Batra, A. K. Gupta,

and V. Kumar, “Comparative study of various traffic generator tools,”
in Engineering and Computational Sciences (RAECS), 2014 Recent

Advances in, March 2014, pp. 1–6.
[4] A. Botta, A. Dainotti, and A. Pescap, “A tool for the generation of real-

istic network workload for emerging networking scenarios,” Computer

Networks, vol. 56, no. 15, pp. 3531 – 3547, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128612000928

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtual-
ization: Challenges and opportunities for innovations,” Communications

Magazine, IEEE, vol. 53, no. 2, pp. 90–97, Feb 2015.
[6] E. Soltanmohammadi, K. Ghavami, and M. Naraghi-Pour, “A survey

of traffic issues in machine-to-machine communications over lte,” IEEE

Internet of Things Journal, vol. 3, no. 6, pp. 865–884, Dec 2016.
[7] “Projeto mestrado,” https://github.com/AndersonPaschoalon/

ProjetoMestrado, 1234, [Online; accessed May 30th, 2017].
[8] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and responsive

network traffic generation,” IEEE/ACM Transactions on Networking,
vol. 17, no. 3, pp. 712–725, June 2009.

[9] G. Bartlett and J. Mirkovic, “Expressing different traffic models using
the legotg framework,” in 2015 IEEE 35th International Conference on

Distributed Computing Systems Workshops, June 2015, pp. 56–63.
[10] N. L. Antoine Varet, “Realistic network traffic profile generation: Theory

and practice,” Computer and Information Science, vol. 7, no. 2, 2014.
[11] W.-c. Feng, A. Goel, A. Bezzaz, W.-c. Feng, and J. Walpole,

“Tcpivo: A high-performance packet replay engine,” in Proceedings

of the ACM SIGCOMM Workshop on Models, Methods and Tools

for Reproducible Network Research, ser. MoMeTools ’03. New
York, NY, USA: ACM, 2003, pp. 57–64. [Online]. Available:
http://doi.acm.org/10.1145/944773.944783

[12] A. Botta, A. Dainotti, and A. Pescape, “Do you trust your software-based
traffic generator?” IEEE Communications Magazine, vol. 48, no. 9, pp.
158–165, Sept 2010.

[13] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of ethernet traffic (extended version),” IEEE/ACM

Transactions on Networking, vol. 2, no. 1, pp. 1–15, Feb 1994.
[14] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,

S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[15] A. d. S. Paschoalon and C. E. Rothenberg, “Automated selection of
inter-packet time models through information criteria,” IEEE Networking

Letters, pp. 1–1, 2019.
[16] R. d. R. Fontes and C. E. Rothenberg, “Mininet-wifi: A platform for

hybrid physical-virtual software-defined wireless networking research,”
in Proceedings of the 2016 ACM SIGCOMM Conference, ser.
SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 607–608.
[Online]. Available: http://doi.acm.org/10.1145/2934872.2959070

Appendix F. Academic contributions 159

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	 List of Tables
	Contents
	Introduction
	Motivation
	Related Work
	Objectives, Requirements, and Methodology
	Outline

	Literature Review
	Traffic Generators
	Strategy
	Implementation

	Realistic Traffic and Traffic Modeling
	Realistic Network Traffic Generation
	Inter-packet times (throughput) modeling
	Packet-sizes modeling
	Packet-header fields
	Flow modeling
	Closed-loop (responsive) models

	Validation of Traffic Generator Tools
	Packet Based Metrics
	Flow Based Metrics
	Fractal and Scaling Characteristics
	QoS/QoE Related Metrics

	Conclusions

	SIMITAR: Architecture and Methodology
	System Overview
	Sniffer
	SQLite database
	Trace Analyzer
	Flow features
	Inter-Packet Times
	Packet Sizes
	Compact Trace Descriptor

	Flow Generator
	Network Packet Generator
	Usability

	Modeling and Algorithms
	Background
	calcOnOff: an algorithm for estimating flow packet-train periods
	Typical header fields by Application protocols
	Automated Selection of Inter-Packet Times
	Cross-validation Methodology
	Datasets
	Stochastic Processes Modeling and Selection
	Stochastic Processes
	Linear Regression (Gradient descendant)
	Direct Estimation
	Maximum Likelihood
	AIC and BIC

	Cross-validation method: Theoretical Foundation of the Cost Function

	Results
	Conclusions

	Proof of Concept Evaluation
	Testbed
	Methodology
	Results
	Conclusions

	Future Work
	Performance
	Modeling optimizations
	TinyFlows and flow merging
	Smarter Flow scheduler and thread management
	DPDK KNI Interfaces
	Multi-thread C++ Sniffer

	Tool Support
	Inter-packet times on TinsFlow
	D-ITG, Ostinato, and DPDK Flow Generators: DitgFlow, OstinatoFlow, DdpkFlow
	ZigBee protocol Support

	Calibration
	min_time
	min_on_time
	session_cut_time

	New Components
	Traffic Measurer
	Pcap files crafter
	Python/Lua Flow Generator

	New Research Topics
	Automated Selection of Inter-packet times models 2.0
	How how to craft malicious flows?
	Envelope and Markovian-based traffic models
	Fractal and multi-fractal modeling: models, Hurst exponent and Hölder exponent.
	Hurst-exponent feedback control system for ON/OFF times
	Traffic generation based on Generative Adversarial Networks (GANs)
	Realistic WAN, Wifi and IoT traffic
	SIMITAR vs Harpoon
	How well traffic generators simulate reproduce stochastic processes?
	Traffic Generator Tools Survey

	Final Conclusions
	Bibliography
	Probability and Math Revision
	Random variable
	Probability Density Function (PDF)
	Cumulative Distribution Function (CDF)
	Expected value, Mean, Variance and Standard Deviation
	Stochastic Process
	Correlation (Pearson correlation coefficient)
	Autocorrelation of a finite time series
	Self-similarity
	Hurst Exponent
	Heavy-tailed distributions
	QQplot analysis
	Akaike information criterion (AIC) and Bayesian information criterion (BIC)
	Gradient Descendent Algorithm

	Computer Networks Review
	Network Stack
	Software Defined Networking (SDN)
	Network Function Virtualization (NFV)
	Internet of Things (IoT)

	Traffic Generators Survey
	Introduction
	Traffic generator tools
	Traffic Generators - Feature Survey
	Packet-level traffic generators
	Application-level/Special-scenarios traffic generators
	Flow-level and multi-level traffic generators
	Others traffic generation tools
	Traffic Generators – Repository Survey

	Validation of Ethernet traffic generators: some use cases
	Swing
	Harpoon
	D-ITG
	sourcesOnOff
	MoonGen
	LegoTG

	Chapter 4 Aditional Plots
	UML Project Diagrams
	Academic contributions

