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Abstract – In this work, we aim to evaluate how good are the information criteria AIC and BIC inferring which
is the best stochastic process to describe Ethernet inter-packet times. Also, we check if there is a practical difference
between using AIC or BIC. We use a set of stochastic distributions to represent inter-packet of a traffic trace and cal-
culate AIC and BIC. To test the quality of BIC and AIC guesses, we define a cost function based on the comparison
of significant stochastic properties for internet traffic modeling, such as correlation, fractal-level and mean. Then,
we compare both results. In this short paper, we present just the results of a public free Skype-application packet
capture, but we provide as reference further analyzes on different traffic traces. We conclude that for most cases AIC
and BIC can guess right the best fitting according to the standards of Ethernet traffic modeling.
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1. Introduction
There are many works devoted to studying the na-
ture of the Ethernet traffic [1]. Classic Ethernet
models use Poisson related processes. Initially, it
makes sense since a Poisson-related process repre-
sents the probability of events occur in many inde-
pendent sources with a known average rate, and in-
dependently of the last occurrence [1] [2]. However
studies made by Leland et al. [1] showed that the
Ethernet traffic has a self-similar and fractal nature.
Even if they can represent the randomness of an Eth-
ernet traffic, simple Poisson processes can’t express
traffic "burstiness" in a long-term time scale, such as
traffic "spikes" on long-range ripples. These char-
acteristics are an indication of the fractal and self-
similar nature of the traffic that usually we express
by distributions with infinite variance, called heavy-
tailed. Heavy-tail means its distribution is not expo-
nentially bounded[3], such as Weibull, Pareto and
Cauchy distribution. Heavy-tailed processes may
guarantee self-similarity, but not necessarily will en-
sure other important features like high correlation
between data and same mean packet rate.

Many investigations were made on the
literature about the nature of the Internet traf-
fic [1][4][5][6][7], and many others on the mod-
eling of stochastic functions for specific scenar-
ios [8][9][10][11][12][9]. However, there are some
limitations on this idea of finding a single model.
Usually, not the same stochastic distribution will
present a proper fitting for all possible kinds of
traces [3]. Depending on some variables, such as the
capture time, the number of packets or type of traf-

fic, different functions may fit better the available
data. On most works the best model representation
for an Ethernet traffic is not chosen analytically but
based on the researcher own data analyses and pur-
poses [13][11][12]. Also, some methods like linear
regression may diverge sometimes. Furthermore, it
has already been proven that a single model cannot
represent arbitrary traffic traces [3].

In this work we test the use of informa-
tion criteria BIC (Bayesian information criterion)
and AIC (Akaike information criterion) as tool for
choosing the best fitting for inter-packet times of
a traffic trace. It is an analytical method which
spares and avoid human analyzes, is easy to be im-
plemented by software, and don’t relies on simula-
tions and generation of random data. We fit a set of
stochastic models through different methods and ap-
plying BIC and AIC to choose the best. On this ar-
ticle, we analyze the results of inter-packet time fit-
ting for one public available trace we call as skype-
pcap1.

First, we explain the mathematical meaning
of BIC and AIC and state the methods we are go-
ing to use to create a set of candidate models for our
dataset. Then we define our cross-validation method
based on a cost function J , attributing weights
from the best to the worst representation for each
properties using randomly generated data with our
stochastic fittings, we can choose the best possible

1It is a lightweight Skype capture, available at
https://wiki.wireshark.org/SampleCaptures, named
SkypeIRC.cap

https://wiki.wireshark.org/SampleCaptures
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traffic model among these fittings. Thus we com-
pare the results achieved by AIC/BIC and our cost
function. Showing that BIC and AIC are good at
guessing the model with smaller J values. Also, we
found that for traffic inter-packet times, that the dif-
ference between BIC and AIC values is minimal. So
choosing one over the other do not seem to be a key
question.

2. AIC and BIC
Suppose that we have an statistical model M of
some dataset x = {x1, ..., xn}, with n independent
and identically distributed observations of a random
variable X . This model can be expressed by a prob-
ability density function (PDF) f(x|θ), where θ is a
vector of parameter of the PDF, θ ∈ Rk (k is the
number of parameters). The likelihood function of
this model M is given by:

L(θ|x) = f(x1|θ)·...·f(xn|θ) =
n∏

i=1

f(xi|θ) (1)

Now, suppose we are trying to estimate the best sta-
tistical model, from a set M1, ...,Mn, each one with
an estimated vector of parameters θ̂1, ..., θ̂n. AIC
and BIC are defined by:

AIC = 2k − ln(L(θ̂|x)) (2)

BIC = k ln(n)− ln(L(θ̂|x)) (3)

In both cases, the preferred model Mi, is the one
with the smaller value of AICi or BICi.

3. Methodology
We collect inter-packet times from the traffic cap-
ture we call skype-pcap. Then, we estimate a
set of parameters for stochastic processes, using
a set of different methodologies, including linear-
regression, maximum likelihood, and direct estima-
tion. We are modeling:

• Weibull, exponential, Pareto and Cauchy
distributions, using linear regression,
through the Gradient descendent algorithm.
We refer to these exponential and Pareto
approximations as Exponential(LR) and
Pareto(LR);
• Normal and exponential distribution, using

direct estimation the mean and the standard
deviation of the dataset for the normal, and

the mean for the exponential. We refer for
to this exponential approximation as Expo-
nential(Me) ;
• Pareto distribution, using the maximum

likelihood method. We refer to this distri-
bution as Pareto(MLH);

Then, from these parametrized models, we
estimate which one best represent our dataset, us-
ing AIC and BIC criteria. These results were ob-
tained using Octave language2, and the scripts are
available at [14] for reproduction purposes. Thus,
to see if our criterion of parameter selection can find
which is the best model according to traffic model-
ing standards on realism and benchmarking[15], we
define a validation methodology. We randomly gen-
erated a dataset using our parameterized stochastic
processes. Then we compare it with the original and
synthetic sample, trough three different metrics, all
with a confidence interval of 95%:

• Correlation between the sample data and
the estimated model (Pearson’s product-
moment coefficient);
• Difference between the original and the

synthetic Hurst exponent;
• Difference between the original and the

synthetic mean inter-packet time;

The Pearson’s product-moment coefficient,
or simply correlation coefficient, is an expression of
the linear dependence or association between two
datasets. To estimate it, we use the Octave’s func-
tion corr(). The Hurst exponent is meter self-
similarity and indicates the fractal level of the inter-
packet times. To estimate this value we use the func-
tion hurst() from Octave, which uses rescaled
range method. Finally, the mean is also relevant,
since it will meters if the packet rate of the approxi-
mation and the original trace are close to each other.

To measure if AIC and BIC are suitable
criteria for model selection for inter-packet times,
we define a cost function based on the correlation,
Hurst exponent and mean. We define Cr as the
vector of correlations of the models ordered from
the greater to the smaller. Also, let the vectors Me
and Hr be the absolute difference (modulus of the
difference) between the estimated models and the
original datasets of the mean and the Hust expo-
nent respectively. We order both from the smaller

2 https://www.gnu.org/software/octave/

https://www.gnu.org/software/octave/
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Table 1. Results of our modeling and simulation methodology for the traffic trace skype-pcap. The
stochastic processes are ordered form the worst to the best fitting, according to AIC and BIC.

Function AIC BIC Parameters
Weibull −2293.8 −2283.8 α : 0.522 β : 0.097
Exponential (Me) −426.13 −421.1 λ : 3.319
Exponential (LR) 96.9 101.8 λ : 1.505
Pareto (MLH) 361.9 371.8 α : 0.0747 xm : 5e− 8
Normal 2423.8 2433.8 µ : 0.301 σ : 0.749
Pareto (LR) 6411.0 6421.08 α : 0.413 xm : 5e− 8
Cauchy 13464.6 13474.5 γ : 0.000275 x0 : 0.219
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Figure 1. Cumulative distribution func-
tion(CDF) for Weibull fitting and empirical data
for inter-packet times of skype-pcap.

to the greatest values. Letting φ(V,M) be an opera-
tor who gives the position of a model M in a vector
V , we define the cost function J as:

J(M) = φ(Cr,M)+φ(Me,M)+φ(Hr,M) (4)

The smaller is the cost J , the best is the model. Then
we compare the results achieved by AIC and BIC,
and J .

4. Results
In table 1 we summarize our estimations for AIC,
BIC, and the stochastic process estimated parame-
ters. Then we organize the values in crescent or-
der of quality, according to the selection criteria (the
smaller, the better). In figure 1 we present the best
fitting chosen both by BIC and AIC criteria. It is
on log-scale, which provides a better visualization
for small time values. Visually we can see that lin-
ear regression with Weibull distribution was able to
provide a good approximation for this dataset.

The difference between BIC and AIC val-
ues in all simulations are much smaller than the dif-
ference between the distributions. This result indi-
cates that for inter-packet times, using AIC or BIC

to pick a model, do not influence the results sig-
nificantly. According to BIC and AIC previsions,
Weibull and Exponential (Me and LR) are the best
options, and the cost functions gave exact this same
order 2. In fact, Weibull pointed as the best stochas-
tic function by BIC and AIC, has half of the penalty
imposed by the cost function J . The following mod-
els however are not in the same order since some
results are flipped. But still, no opposite correspon-
dence can be found. No result found by AIC and
BIC were far from the one pointed by J . An impor-
tant observation to be made here is about the fact
that each stochastic function may guarantee differ-
ent porperties. For example, the Exponential(Me)
guarantee the same mean packet rate from the orig-
inal. Heavy-tailed distributions are more likely to
guarantee

5. Conclusion
In this work, we analyze how BIC and AIC per-
form being used as analytical selection criteria form
stochastic models for Ethernet inter-packet times.
Using a cross-validation methodology based on the
generation of random data using these models, and
pointing a cost function. We saw that both AIC or
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Figure 2. Cost function J of each stochastic
process for skype-pcap.
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BIC and the cost function were able to pick the first
models in the same order. Therefore, analytically
with BIC and AIC, we were able to achieve the
same results as pointed by our simulations. Even if
AIC and BIC mathematical definitions are unaware
of the specific requirements of Ethernet traffic mod-
eling, such as same fractal-level and close packet
per second rate, they still can point the best choices
according to these constraints. In this work, we an-
alyze just inter-packet times of a single trace. How-
ever at [14] we perform the same methodology on
different types of traffic captures, finding similar re-
sults. Therefore, we can conclude that BIC and AIC
are healthy alternatives for model selection of Eth-
ernet inter-packet times models and we can safely
use them. Finally, we must point some advantages
of BIC and AIC instead of simulations. Since it is
an analytical model, no generation of random data is
necessary, being computationally cheaper and easy
to code. Also, since we do not use a single stochas-
tic function and parameterization strategy, it is re-
silient to the fact that some methods like linear-
regression over Weibull may diverge sometimes. If
it happens, BIC or AIC will discard this guesses,
and choose another one automatically. Last but not
least, to the best of our knowledge, this is the most
comprehensive investigation of the actual quality of
BIC and AIC as model selection criteria of for inter-
packet times.
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